R version 2.12.0 (2010-10-15) Copyright (C) 2010 The R Foundation for Statistical Computing ISBN 3-900051-07-0 Platform: i486-pc-linux-gnu (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- c(4.785,4.109,4.026,4.44,3.828,3.953,4.801,4.104,4.57,4.411,4.839,4.736,3.83,4.248,5.657,3.809,4.578,4.3,5.103,4.121,4.205,5.116,4.219,4.736,4.625,4.146,5.299,5.011,4.731,4.619,5.578,5.369,4.904,6.102,5.04,5.731,5.732,4.491,4.755,5.208,4.962,4.163,5.592,5.761,4.929,5.219,4.429,4.143,4.308,3.996,4.634,4.138,3.759,3.922,5.56,4.004,3.937,5.25,3.908,4.814,4.407,3.243,3.74,3.949,3.711,3.796,4.145,3.499,4.164,3.902,3.186,3.353,3.475,3.032,3.341,3.811,3.655,4.058,3.682,3.348,3.848,3.289,3.851,2.766,2.837,2.734,3.764,3.215,3.287,3.507,3.06,3.734,3.849,4.404,3.497,3.389,2.944,3.098,3.48,3.353,3.958,3.504,3.446,3.794,3.676,4.159,3.914,3.595) > par10 = 'FALSE' > par9 = '0' > par8 = '0' > par7 = '1' > par6 = '1' > par5 = '12' > par4 = '0' > par3 = '1' > par2 = '0.0' > par1 = '12' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: Wessa P., (2009), ARIMA Forecasting (v1.0.5) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_arimaforecasting.wasp/ > #Source of accompanying publication: > #Technical description: > par1 <- as.numeric(par1) #cut off periods > par2 <- as.numeric(par2) #lambda > par3 <- as.numeric(par3) #degree of non-seasonal differencing > par4 <- as.numeric(par4) #degree of seasonal differencing > par5 <- as.numeric(par5) #seasonal period > par6 <- as.numeric(par6) #p > par7 <- as.numeric(par7) #q > par8 <- as.numeric(par8) #P > par9 <- as.numeric(par9) #Q > if (par10 == 'TRUE') par10 <- TRUE > if (par10 == 'FALSE') par10 <- FALSE > if (par2 == 0) x <- log(x) > if (par2 != 0) x <- x^par2 > lx <- length(x) > first <- lx - 2*par1 > nx <- lx - par1 > nx1 <- nx + 1 > fx <- lx - nx > if (fx < 1) { + fx <- par5 + nx1 <- lx + fx - 1 + first <- lx - 2*fx + } > first <- 1 > if (fx < 3) fx <- round(lx/10,0) > (arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML')) Call: arima(x = x[1:nx], order = c(par6, par3, par7), seasonal = list(order = c(par8, par4, par9), period = par5), include.mean = par10, method = "ML") Coefficients: ar1 ma1 -0.0884 -0.7183 s.e. 0.1350 0.0940 sigma^2 estimated as 0.01508: log likelihood = 64, aic = -122 > (forecast <- predict(arima.out,par1)) $pred Time Series: Start = 97 End = 108 Frequency = 1 [1] 1.284254 1.278624 1.279122 1.279078 1.279082 1.279081 1.279081 1.279081 [9] 1.279081 1.279081 1.279081 1.279081 $se Time Series: Start = 97 End = 108 Frequency = 1 [1] 0.1228076 0.1250821 0.1292348 0.1330716 0.1368167 0.1404607 0.1440126 [8] 0.1474790 0.1508657 0.1541781 0.1574208 0.1605980 > (lb <- forecast$pred - 1.96 * forecast$se) Time Series: Start = 97 End = 108 Frequency = 1 [1] 1.0435515 1.0334634 1.0258216 1.0182574 1.0109208 1.0037783 0.9968167 [8] 0.9900226 0.9833846 0.9768923 0.9705367 0.9643093 > (ub <- forecast$pred + 1.96 * forecast$se) Time Series: Start = 97 End = 108 Frequency = 1 [1] 1.524957 1.523785 1.532422 1.539898 1.547242 1.554384 1.561346 1.568140 [9] 1.574778 1.581270 1.587626 1.593853 > if (par2 == 0) { + x <- exp(x) + forecast$pred <- exp(forecast$pred) + lb <- exp(lb) + ub <- exp(ub) + } > if (par2 != 0) { + x <- x^(1/par2) + forecast$pred <- forecast$pred^(1/par2) + lb <- lb^(1/par2) + ub <- ub^(1/par2) + } > if (par2 < 0) { + olb <- lb + lb <- ub + ub <- olb + } > (actandfor <- c(x[1:nx], forecast$pred)) [1] 4.785000 4.109000 4.026000 4.440000 3.828000 3.953000 4.801000 4.104000 [9] 4.570000 4.411000 4.839000 4.736000 3.830000 4.248000 5.657000 3.809000 [17] 4.578000 4.300000 5.103000 4.121000 4.205000 5.116000 4.219000 4.736000 [25] 4.625000 4.146000 5.299000 5.011000 4.731000 4.619000 5.578000 5.369000 [33] 4.904000 6.102000 5.040000 5.731000 5.732000 4.491000 4.755000 5.208000 [41] 4.962000 4.163000 5.592000 5.761000 4.929000 5.219000 4.429000 4.143000 [49] 4.308000 3.996000 4.634000 4.138000 3.759000 3.922000 5.560000 4.004000 [57] 3.937000 5.250000 3.908000 4.814000 4.407000 3.243000 3.740000 3.949000 [65] 3.711000 3.796000 4.145000 3.499000 4.164000 3.902000 3.186000 3.353000 [73] 3.475000 3.032000 3.341000 3.811000 3.655000 4.058000 3.682000 3.348000 [81] 3.848000 3.289000 3.851000 2.766000 2.837000 2.734000 3.764000 3.215000 [89] 3.287000 3.507000 3.060000 3.734000 3.849000 4.404000 3.497000 3.389000 [97] 3.611974 3.591695 3.593482 3.593324 3.593338 3.593337 3.593337 3.593337 [105] 3.593337 3.593337 3.593337 3.593337 > (perc.se <- (ub-forecast$pred)/1.96/forecast$pred) Time Series: Start = 97 End = 108 Frequency = 1 [1] 0.1388485 0.1417484 0.1470765 0.1520380 0.1569170 0.1616988 0.1663927 [8] 0.1710052 0.1755421 0.1800086 0.1844094 0.1887485 > postscript(file="/var/www/rcomp/tmp/1esy31292532913.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mar=c(4,4,2,2),las=1) > ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub)) > plot(x,ylim=ylim,type='n',xlim=c(first,lx)) > usr <- par('usr') > rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon') > rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender') > abline(h= (-3:3)*2 , col ='gray', lty =3) > polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA) > lines(nx1:lx, lb , lty=2) > lines(nx1:lx, ub , lty=2) > lines(x, lwd=2) > lines(nx1:lx, forecast$pred , lwd=2 , col ='white') > box() > par(opar) > dev.off() null device 1 > prob.dec <- array(NA, dim=fx) > prob.sdec <- array(NA, dim=fx) > prob.ldec <- array(NA, dim=fx) > prob.pval <- array(NA, dim=fx) > perf.pe <- array(0, dim=fx) > perf.mape <- array(0, dim=fx) > perf.mape1 <- array(0, dim=fx) > perf.se <- array(0, dim=fx) > perf.mse <- array(0, dim=fx) > perf.mse1 <- array(0, dim=fx) > perf.rmse <- array(0, dim=fx) > for (i in 1:fx) { + locSD <- (ub[i] - forecast$pred[i]) / 1.96 + perf.pe[i] = (x[nx+i] - forecast$pred[i]) / forecast$pred[i] + perf.se[i] = (x[nx+i] - forecast$pred[i])^2 + prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD) + prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD) + prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD) + prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD) + } > perf.mape[1] = abs(perf.pe[1]) > perf.mse[1] = abs(perf.se[1]) > for (i in 2:fx) { + perf.mape[i] = perf.mape[i-1] + abs(perf.pe[i]) + perf.mape1[i] = perf.mape[i] / i + perf.mse[i] = perf.mse[i-1] + perf.se[i] + perf.mse1[i] = perf.mse[i] / i + } > perf.rmse = sqrt(perf.mse1) > postscript(file="/var/www/rcomp/tmp/2akwc1292532913.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub))) > dum <- forecast$pred > dum[1:par1] <- x[(nx+1):lx] > lines(dum, lty=1) > lines(ub,lty=3) > lines(lb,lty=3) > dev.off() null device 1 > > #Note: the /var/www/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/www/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'Y[t]',1,header=TRUE) > a<-table.element(a,'F[t]',1,header=TRUE) > a<-table.element(a,'95% LB',1,header=TRUE) > a<-table.element(a,'95% UB',1,header=TRUE) > a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE) > mylab <- paste('P(F[t]>Y[',nx,sep='') > mylab <- paste(mylab,'])',sep='') > a<-table.element(a,mylab,1,header=TRUE) > a<-table.row.end(a) > for (i in (nx-par5):nx) { + a<-table.row.start(a) + a<-table.element(a,i,header=TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.row.end(a) + } > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(x[nx+i],4)) + a<-table.element(a,round(forecast$pred[i],4)) + a<-table.element(a,round(lb[i],4)) + a<-table.element(a,round(ub[i],4)) + a<-table.element(a,round((1-prob.pval[i]),4)) + a<-table.element(a,round((1-prob.dec[i]),4)) + a<-table.element(a,round((1-prob.sdec[i]),4)) + a<-table.element(a,round((1-prob.ldec[i]),4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/rcomp/tmp/3g3t51292532913.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',7,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'% S.E.',1,header=TRUE) > a<-table.element(a,'PE',1,header=TRUE) > a<-table.element(a,'MAPE',1,header=TRUE) > a<-table.element(a,'Sq.E',1,header=TRUE) > a<-table.element(a,'MSE',1,header=TRUE) > a<-table.element(a,'RMSE',1,header=TRUE) > a<-table.row.end(a) > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(perc.se[i],4)) + a<-table.element(a,round(perf.pe[i],4)) + a<-table.element(a,round(perf.mape1[i],4)) + a<-table.element(a,round(perf.se[i],4)) + a<-table.element(a,round(perf.mse1[i],4)) + a<-table.element(a,round(perf.rmse[i],4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/rcomp/tmp/42msb1292532913.tab") > > try(system("convert tmp/1esy31292532913.ps tmp/1esy31292532913.png",intern=TRUE)) character(0) > try(system("convert tmp/2akwc1292532913.ps tmp/2akwc1292532913.png",intern=TRUE)) character(0) > > > proc.time() user system elapsed 0.72 0.38 1.09