R version 2.6.0 (2007-10-03) Copyright (C) 2007 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- c(112.7,118.4,108.1,105.4,114.6,106.9,115.9,109.8,101.8,114.2,110.8,108.4,127.5,128.6,116.6,127.4,105,108.3,125,111.6,106.5,130.3,115,116.1,134,126.5,125.8,136.4,114.9,110.9,125.5,116.8,116.8,125.5,104.2,115.1,132.8,123.3,124.8,122,117.4,117.9,137.4,114.6,124.7,129.6,109.4,120.9,134.9,136.3,133.2,127.2,122.7,120.5,137.8,119.1,124.3,134.3,121.7,125) > par9 = '1' > par8 = '2' > par7 = '1' > par6 = '3' > par5 = '12' > par4 = '1' > par3 = '1' > par2 = '0.0' > par1 = 'FALSE' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: AUTHOR(S), (YEAR), YOUR SOFTWARE TITLE (vNUMBER) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_YOURPAGE.wasp/ > #Source of accompanying publication: Office for Research, Development, and Education > #Technical description: Write here your technical program description (don't use hard returns!) > library(lattice) > if (par1 == 'TRUE') par1 <- TRUE > if (par1 == 'FALSE') par1 <- FALSE > par2 <- as.numeric(par2) #Box-Cox lambda transformation parameter > par3 <- as.numeric(par3) #degree of non-seasonal differencing > par4 <- as.numeric(par4) #degree of seasonal differencing > par5 <- as.numeric(par5) #seasonal period > par6 <- as.numeric(par6) #degree (p) of the non-seasonal AR(p) polynomial > par7 <- as.numeric(par7) #degree (q) of the non-seasonal MA(q) polynomial > par8 <- as.numeric(par8) #degree (P) of the seasonal AR(P) polynomial > par9 <- as.numeric(par9) #degree (Q) of the seasonal MA(Q) polynomial > armaGR <- function(arima.out, names, n){ + try1 <- arima.out$coef + try2 <- sqrt(diag(arima.out$var.coef)) + try.data.frame <- data.frame(matrix(NA,ncol=4,nrow=length(names))) + dimnames(try.data.frame) <- list(names,c('coef','std','tstat','pv')) + try.data.frame[,1] <- try1 + for(i in 1:length(try2)) try.data.frame[which(rownames(try.data.frame)==names(try2)[i]),2] <- try2[i] + try.data.frame[,3] <- try.data.frame[,1] / try.data.frame[,2] + try.data.frame[,4] <- round((1-pt(abs(try.data.frame[,3]),df=n-(length(try2)+1)))*2,5) + vector <- rep(NA,length(names)) + vector[is.na(try.data.frame[,4])] <- 0 + maxi <- which.max(try.data.frame[,4]) + continue <- max(try.data.frame[,4],na.rm=TRUE) > .05 + vector[maxi] <- 0 + list(summary=try.data.frame,next.vector=vector,continue=continue) + } > arimaSelect <- function(series, order=c(13,0,0), seasonal=list(order=c(2,0,0),period=12), include.mean=F){ + nrc <- order[1]+order[3]+seasonal$order[1]+seasonal$order[3] + coeff <- matrix(NA, nrow=nrc, ncol=nrc) + pval <- matrix(NA, nrow=nrc, ncol=nrc) + mylist <- rep(list(NULL), nrc) + names <- NULL + if(order[1] > 0) names <- paste('ar',1:order[1],sep='') + if(order[3] > 0) names <- c( names , paste('ma',1:order[3],sep='') ) + if(seasonal$order[1] > 0) names <- c(names, paste('sar',1:seasonal$order[1],sep='')) + if(seasonal$order[3] > 0) names <- c(names, paste('sma',1:seasonal$order[3],sep='')) + arima.out <- arima(series, order=order, seasonal=seasonal, include.mean=include.mean, method='ML') + mylist[[1]] <- arima.out + last.arma <- armaGR(arima.out, names, length(series)) + mystop <- FALSE + i <- 1 + coeff[i,] <- last.arma[[1]][,1] + pval [i,] <- last.arma[[1]][,4] + i <- 2 + aic <- arima.out$aic + while(!mystop){ + mylist[[i]] <- arima.out + arima.out <- arima(series, order=order, seasonal=seasonal, include.mean=include.mean, method='ML', fixed=last.arma$next.vector) + aic <- c(aic, arima.out$aic) + last.arma <- armaGR(arima.out, names, length(series)) + mystop <- !last.arma$continue + coeff[i,] <- last.arma[[1]][,1] + pval [i,] <- last.arma[[1]][,4] + i <- i+1 + } + list(coeff, pval, mylist, aic=aic) + } > arimaSelectplot <- function(arimaSelect.out,noms,choix){ + noms <- names(arimaSelect.out[[3]][[1]]$coef) + coeff <- arimaSelect.out[[1]] + k <- min(which(is.na(coeff[,1])))-1 + coeff <- coeff[1:k,] + pval <- arimaSelect.out[[2]][1:k,] + aic <- arimaSelect.out$aic[1:k] + coeff[coeff==0] <- NA + n <- ncol(coeff) + if(missing(choix)) choix <- k + layout(matrix(c(1,1,1,2, + 3,3,3,2, + 3,3,3,4, + 5,6,7,7),nr=4), + widths=c(10,35,45,15), + heights=c(30,30,15,15)) + couleurs <- rainbow(75)[1:50]#(50) + ticks <- pretty(coeff) + par(mar=c(1,1,3,1)) + plot(aic,k:1-.5,type='o',pch=21,bg='blue',cex=2,axes=F,lty=2,xpd=NA) + points(aic[choix],k-choix+.5,pch=21,cex=4,bg=2,xpd=NA) + title('aic',line=2) + par(mar=c(3,0,0,0)) + plot(0,axes=F,xlab='',ylab='',xlim=range(ticks),ylim=c(.1,1)) + rect(xleft = min(ticks) + (0:49)/50*(max(ticks)-min(ticks)), + xright = min(ticks) + (1:50)/50*(max(ticks)-min(ticks)), + ytop = rep(1,50), + ybottom= rep(0,50),col=couleurs,border=NA) + axis(1,ticks) + rect(xleft=min(ticks),xright=max(ticks),ytop=1,ybottom=0) + text(mean(coeff,na.rm=T),.5,'coefficients',cex=2,font=2) + par(mar=c(1,1,3,1)) + image(1:n,1:k,t(coeff[k:1,]),axes=F,col=couleurs,zlim=range(ticks)) + for(i in 1:n) for(j in 1:k) if(!is.na(coeff[j,i])) { + if(pval[j,i]<.01) symb = 'green' + else if( (pval[j,i]<.05) & (pval[j,i]>=.01)) symb = 'orange' + else if( (pval[j,i]<.1) & (pval[j,i]>=.05)) symb = 'red' + else symb = 'black' + polygon(c(i+.5 ,i+.2 ,i+.5 ,i+.5), + c(k-j+0.5,k-j+0.5,k-j+0.8,k-j+0.5), + col=symb) + if(j==choix) { + rect(xleft=i-.5, + xright=i+.5, + ybottom=k-j+1.5, + ytop=k-j+.5, + lwd=4) + text(i, + k-j+1, + round(coeff[j,i],2), + cex=1.2, + font=2) + } + else{ + rect(xleft=i-.5,xright=i+.5,ybottom=k-j+1.5,ytop=k-j+.5) + text(i,k-j+1,round(coeff[j,i],2),cex=1.2,font=1) + } + } + axis(3,1:n,noms) + par(mar=c(0.5,0,0,0.5)) + plot(0,axes=F,xlab='',ylab='',type='n',xlim=c(0,8),ylim=c(-.2,.8)) + cols <- c('green','orange','red','black') + niv <- c('0','0.01','0.05','0.1') + for(i in 0:3){ + polygon(c(1+2*i ,1+2*i ,1+2*i-.5 ,1+2*i), + c(.4 ,.7 , .4 , .4), + col=cols[i+1]) + text(2*i,0.5,niv[i+1],cex=1.5) + } + text(8,.5,1,cex=1.5) + text(4,0,'p-value',cex=2) + box() + residus <- arimaSelect.out[[3]][[choix]]$res + par(mar=c(1,2,4,1)) + acf(residus,main='') + title('acf',line=.5) + par(mar=c(1,2,4,1)) + pacf(residus,main='') + title('pacf',line=.5) + par(mar=c(2,2,4,1)) + qqnorm(residus,main='') + title('qq-norm',line=.5) + residus + } > if (par2 == 0) x <- log(x) > if (par2 != 0) x <- x^par2 > (selection <- arimaSelect(x, order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5))) [[1]] [,1] [,2] [,3] [,4] [,5] [,6] [1,] 0.02959853 -0.01704236 0.3461465 -0.9593551 -0.001542661 -0.5624238 [2,] 0.02996643 -0.01735385 0.3457185 -1.0429289 0.000000000 -0.5619536 [3,] 0.03937103 0.00000000 0.3529066 -0.9913288 0.000000000 -0.5618237 [4,] 0.00000000 0.00000000 0.3387010 -1.0571150 0.000000000 -0.5553036 [5,] 0.00000000 0.00000000 0.2807422 -1.0814802 0.000000000 -0.5305138 [6,] 0.00000000 0.00000000 0.0000000 -1.2057549 0.000000000 -0.4642126 [7,] NA NA NA NA NA NA [,7] [1,] -0.9712123 [2,] -0.9623753 [3,] -0.9723382 [4,] -0.9872886 [5,] 0.0000000 [6,] 0.0000000 [7,] NA [[2]] [,1] [,2] [,3] [,4] [,5] [,6] [,7] [1,] 0.90122 0.93098 0.07928 0.01509 0.99368 0.00073 0.68175 [2,] 0.89209 0.92947 0.07839 0.01309 NA 0.00030 0.62865 [3,] 0.81272 NA 0.03046 0.25879 NA 0.00024 0.64812 [4,] NA NA 0.03374 0.00000 NA 0.00027 0.49716 [5,] NA NA 0.08726 0.00000 NA 0.00076 NA [6,] NA NA NA 0.00000 NA 0.00549 NA [7,] NA NA NA NA NA NA NA [[3]] [[3]][[1]] Call: arima(x = series, order = order, seasonal = seasonal, include.mean = include.mean, method = "ML") Coefficients: ar1 ar2 ar3 ma1 sar1 sar2 sma1 0.0296 -0.0170 0.3461 -0.9594 -0.0015 -0.5624 -0.9712 s.e. 0.2373 0.1958 0.1934 0.3817 0.1939 0.1565 2.3551 sigma^2 estimated as 0.001083: log likelihood = 75.53, aic = -135.07 [[3]][[2]] Call: arima(x = series, order = order, seasonal = seasonal, include.mean = include.mean, method = "ML") Coefficients: ar1 ar2 ar3 ma1 sar1 sar2 sma1 0.0296 -0.0170 0.3461 -0.9594 -0.0015 -0.5624 -0.9712 s.e. 0.2373 0.1958 0.1934 0.3817 0.1939 0.1565 2.3551 sigma^2 estimated as 0.001083: log likelihood = 75.53, aic = -135.07 [[3]][[3]] Call: arima(x = series, order = order, seasonal = seasonal, include.mean = include.mean, fixed = last.arma$next.vector, method = "ML") Coefficients: ar1 ar2 ar3 ma1 sar1 sar2 sma1 0.0300 -0.0174 0.3457 -1.0429 0 -0.5620 -0.9624 s.e. 0.2198 0.1951 0.1926 0.4062 0 0.1451 1.9783 sigma^2 estimated as 0.001006: log likelihood = 75.53, aic = -137.07 [[3]][[4]] Call: arima(x = series, order = order, seasonal = seasonal, include.mean = include.mean, fixed = last.arma$next.vector, method = "ML") Coefficients: ar1 ar2 ar3 ma1 sar1 sar2 sma1 0.0394 0 0.3529 -0.9913 0 -0.5618 -0.9723 s.e. 0.1654 0 0.1588 0.8686 0 0.1428 2.1187 sigma^2 estimated as 0.001058: log likelihood = 75.53, aic = -139.06 [[3]][[5]] Call: arima(x = series, order = order, seasonal = seasonal, include.mean = include.mean, fixed = last.arma$next.vector, method = "ML") Coefficients: ar1 ar2 ar3 ma1 sar1 sar2 sma1 0 0 0.3387 -1.0571 0 -0.5553 -0.9873 s.e. 0 0 0.1555 0.1896 0 0.1426 1.4445 sigma^2 estimated as 0.0009693: log likelihood = 75.51, aic = -141.01 [[3]][[6]] Call: arima(x = series, order = order, seasonal = seasonal, include.mean = include.mean, fixed = last.arma$next.vector, method = "ML") Coefficients: ar1 ar2 ar3 ma1 sar1 sar2 sma1 0 0 0.2807 -1.0815 0 -0.5305 0 s.e. 0 0 0.1613 0.1726 0 0.1489 0 sigma^2 estimated as 0.001939: log likelihood = 71.52, aic = -135.03 [[3]][[7]] NULL $aic [1] -135.0678 -137.0669 -139.0592 -141.0102 -135.0347 -134.0124 Warning messages: 1: In arima(series, order = order, seasonal = seasonal, include.mean = include.mean, : some AR parameters were fixed: setting transform.pars = FALSE 2: In arima(series, order = order, seasonal = seasonal, include.mean = include.mean, : some AR parameters were fixed: setting transform.pars = FALSE 3: In arima(series, order = order, seasonal = seasonal, include.mean = include.mean, : some AR parameters were fixed: setting transform.pars = FALSE 4: In arima(series, order = order, seasonal = seasonal, include.mean = include.mean, : some AR parameters were fixed: setting transform.pars = FALSE 5: In arima(series, order = order, seasonal = seasonal, include.mean = include.mean, : some AR parameters were fixed: setting transform.pars = FALSE > postscript(file="/var/www/html/rcomp/tmp/17iwp1196675204.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > resid <- arimaSelectplot(selection) > dev.off() null device 1 > resid Time Series: Start = 1 End = 60 Frequency = 1 [1] 0.0027278223 0.0012581376 0.0007467262 0.0005342685 0.0005018949 [6] 0.0003536218 0.0003780756 0.0002798302 0.0001770777 0.0002686538 [11] 0.0002152971 -0.0024784513 -0.0159638533 -0.0225657069 -0.0174019273 [16] 0.0651553641 -0.1450129725 -0.0469470125 -0.0175776582 -0.0013499252 [21] -0.0006930262 0.0528650772 -0.0128507551 0.0064648452 -0.0276259064 [26] -0.0560587159 0.0139547838 0.0113676788 0.0415935343 -0.0340084342 [31] -0.0432752094 -0.0132114076 0.0387784451 -0.0560868000 -0.1124746712 [36] -0.0426875388 0.0116849141 -0.0115717109 -0.0137800172 -0.0582933957 [41] -0.0553381699 0.0315007155 0.0970611371 -0.0375935633 0.0334069238 [46] 0.0260853848 0.0293478549 0.0168936403 -0.0278742428 0.0286830160 [51] 0.0348003617 0.0179561407 0.0166588291 -0.0413987446 -0.0581838737 [56] -0.0040584229 -0.0044425641 -0.0242487565 -0.0017540290 -0.0207683097 > postscript(file="/var/www/html/rcomp/tmp/2z82o1196675204.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > acf(resid,length(resid)/2, main='Residual Autocorrelation Function') > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/3o0y61196675204.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > pacf(resid,length(resid)/2, main='Residual Partial Autocorrelation Function') > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/4tsds1196675204.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > cpgram(resid, main='Residual Cumulative Periodogram') > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/5zps31196675204.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > hist(resid, main='Residual Histogram', xlab='values of Residuals') > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/6gb7p1196675204.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > densityplot(~resid,col='black',main='Residual Density Plot', xlab='values of Residuals') > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/7mq071196675204.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > qqnorm(resid, main='Residual Normal Q-Q Plot') > dev.off() null device 1 > ncols <- length(selection[[1]][1,]) > nrows <- length(selection[[2]][,1])-1 > load(file='/var/www/html/rcomp/createtable') > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'ARIMA Parameter Estimation and Backward Selection', ncols+1,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Iteration', header=TRUE) > for (i in 1:ncols) { + a<-table.element(a,names(selection[[3]][[1]]$coef)[i],header=TRUE) + } > a<-table.row.end(a) > for (j in 1:nrows) { + a<-table.row.start(a) + mydum <- 'Estimates (' + mydum <- paste(mydum,j) + mydum <- paste(mydum,')') + a<-table.element(a,mydum, header=TRUE) + for (i in 1:ncols) { + a<-table.element(a,round(selection[[1]][j,i],4)) + } + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'(p-val)', header=TRUE) + for (i in 1:ncols) { + mydum <- '(' + mydum <- paste(mydum,round(selection[[2]][j,i],4),sep='') + mydum <- paste(mydum,')') + a<-table.element(a,mydum) + } + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/8lbcb1196675204.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Estimated ARIMA Residuals', 1,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Value', 1,TRUE) > a<-table.row.end(a) > for (i in (par4*par5+par3):length(resid)) { + a<-table.row.start(a) + a<-table.element(a,resid[i]) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/9nxuo1196675204.tab") > > system("convert tmp/17iwp1196675204.ps tmp/17iwp1196675204.png") > system("convert tmp/2z82o1196675204.ps tmp/2z82o1196675204.png") > system("convert tmp/3o0y61196675204.ps tmp/3o0y61196675204.png") > system("convert tmp/4tsds1196675204.ps tmp/4tsds1196675204.png") > system("convert tmp/5zps31196675204.ps tmp/5zps31196675204.png") > system("convert tmp/6gb7p1196675204.ps tmp/6gb7p1196675204.png") > system("convert tmp/7mq071196675204.ps tmp/7mq071196675204.png") > > > proc.time() user system elapsed 8.640 1.322 9.366