R version 2.6.0 (2007-10-03) Copyright (C) 2007 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- c(5329,4903,5826,6006,6552,6748,5633,5361,6631,7078,6100,6376,5571,5512,5461,5704,6420,6344,5624,5322,6098,6303,5581,5491,5108,4585,5545,5145,5888,5925,5715,5595,6160,6163,5906,5045,5130,4743,5438,5698,6333,6340,5635,5948,6199,6023,4540,4315,5161,4433,5199,5582,5936,6391,5647,5827,6101,5777,5511,5036,4468,4053,4821,5138,6102,6029,5365,5717,6150,5737,5268,5307) > par9 = '1' > par8 = '2' > par7 = '1' > par6 = '3' > par5 = '12' > par4 = '0' > par3 = '0' > par2 = '1' > par1 = 'FALSE' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: AUTHOR(S), (YEAR), YOUR SOFTWARE TITLE (vNUMBER) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_YOURPAGE.wasp/ > #Source of accompanying publication: Office for Research, Development, and Education > #Technical description: Write here your technical program description (don't use hard returns!) > library(lattice) > if (par1 == 'TRUE') par1 <- TRUE > if (par1 == 'FALSE') par1 <- FALSE > par2 <- as.numeric(par2) #Box-Cox lambda transformation parameter > par3 <- as.numeric(par3) #degree of non-seasonal differencing > par4 <- as.numeric(par4) #degree of seasonal differencing > par5 <- as.numeric(par5) #seasonal period > par6 <- as.numeric(par6) #degree (p) of the non-seasonal AR(p) polynomial > par7 <- as.numeric(par7) #degree (q) of the non-seasonal MA(q) polynomial > par8 <- as.numeric(par8) #degree (P) of the seasonal AR(P) polynomial > par9 <- as.numeric(par9) #degree (Q) of the seasonal MA(Q) polynomial > armaGR <- function(arima.out, names, n){ + try1 <- arima.out$coef + try2 <- sqrt(diag(arima.out$var.coef)) + try.data.frame <- data.frame(matrix(NA,ncol=4,nrow=length(names))) + dimnames(try.data.frame) <- list(names,c('coef','std','tstat','pv')) + try.data.frame[,1] <- try1 + for(i in 1:length(try2)) try.data.frame[which(rownames(try.data.frame)==names(try2)[i]),2] <- try2[i] + try.data.frame[,3] <- try.data.frame[,1] / try.data.frame[,2] + try.data.frame[,4] <- round((1-pt(abs(try.data.frame[,3]),df=n-(length(try2)+1)))*2,5) + vector <- rep(NA,length(names)) + vector[is.na(try.data.frame[,4])] <- 0 + maxi <- which.max(try.data.frame[,4]) + continue <- max(try.data.frame[,4],na.rm=TRUE) > .05 + vector[maxi] <- 0 + list(summary=try.data.frame,next.vector=vector,continue=continue) + } > arimaSelect <- function(series, order=c(13,0,0), seasonal=list(order=c(2,0,0),period=12), include.mean=F){ + nrc <- order[1]+order[3]+seasonal$order[1]+seasonal$order[3] + coeff <- matrix(NA, nrow=nrc, ncol=nrc) + pval <- matrix(NA, nrow=nrc, ncol=nrc) + mylist <- rep(list(NULL), nrc) + names <- NULL + if(order[1] > 0) names <- paste('ar',1:order[1],sep='') + if(order[3] > 0) names <- c( names , paste('ma',1:order[3],sep='') ) + if(seasonal$order[1] > 0) names <- c(names, paste('sar',1:seasonal$order[1],sep='')) + if(seasonal$order[3] > 0) names <- c(names, paste('sma',1:seasonal$order[3],sep='')) + arima.out <- arima(series, order=order, seasonal=seasonal, include.mean=include.mean, method='ML') + mylist[[1]] <- arima.out + last.arma <- armaGR(arima.out, names, length(series)) + mystop <- FALSE + i <- 1 + coeff[i,] <- last.arma[[1]][,1] + pval [i,] <- last.arma[[1]][,4] + i <- 2 + aic <- arima.out$aic + while(!mystop){ + mylist[[i]] <- arima.out + arima.out <- arima(series, order=order, seasonal=seasonal, include.mean=include.mean, method='ML', fixed=last.arma$next.vector) + aic <- c(aic, arima.out$aic) + last.arma <- armaGR(arima.out, names, length(series)) + mystop <- !last.arma$continue + coeff[i,] <- last.arma[[1]][,1] + pval [i,] <- last.arma[[1]][,4] + i <- i+1 + } + list(coeff, pval, mylist, aic=aic) + } > arimaSelectplot <- function(arimaSelect.out,noms,choix){ + noms <- names(arimaSelect.out[[3]][[1]]$coef) + coeff <- arimaSelect.out[[1]] + k <- min(which(is.na(coeff[,1])))-1 + coeff <- coeff[1:k,] + pval <- arimaSelect.out[[2]][1:k,] + aic <- arimaSelect.out$aic[1:k] + coeff[coeff==0] <- NA + n <- ncol(coeff) + if(missing(choix)) choix <- k + layout(matrix(c(1,1,1,2, + 3,3,3,2, + 3,3,3,4, + 5,6,7,7),nr=4), + widths=c(10,35,45,15), + heights=c(30,30,15,15)) + couleurs <- rainbow(75)[1:50]#(50) + ticks <- pretty(coeff) + par(mar=c(1,1,3,1)) + plot(aic,k:1-.5,type='o',pch=21,bg='blue',cex=2,axes=F,lty=2,xpd=NA) + points(aic[choix],k-choix+.5,pch=21,cex=4,bg=2,xpd=NA) + title('aic',line=2) + par(mar=c(3,0,0,0)) + plot(0,axes=F,xlab='',ylab='',xlim=range(ticks),ylim=c(.1,1)) + rect(xleft = min(ticks) + (0:49)/50*(max(ticks)-min(ticks)), + xright = min(ticks) + (1:50)/50*(max(ticks)-min(ticks)), + ytop = rep(1,50), + ybottom= rep(0,50),col=couleurs,border=NA) + axis(1,ticks) + rect(xleft=min(ticks),xright=max(ticks),ytop=1,ybottom=0) + text(mean(coeff,na.rm=T),.5,'coefficients',cex=2,font=2) + par(mar=c(1,1,3,1)) + image(1:n,1:k,t(coeff[k:1,]),axes=F,col=couleurs,zlim=range(ticks)) + for(i in 1:n) for(j in 1:k) if(!is.na(coeff[j,i])) { + if(pval[j,i]<.01) symb = 'green' + else if( (pval[j,i]<.05) & (pval[j,i]>=.01)) symb = 'orange' + else if( (pval[j,i]<.1) & (pval[j,i]>=.05)) symb = 'red' + else symb = 'black' + polygon(c(i+.5 ,i+.2 ,i+.5 ,i+.5), + c(k-j+0.5,k-j+0.5,k-j+0.8,k-j+0.5), + col=symb) + if(j==choix) { + rect(xleft=i-.5, + xright=i+.5, + ybottom=k-j+1.5, + ytop=k-j+.5, + lwd=4) + text(i, + k-j+1, + round(coeff[j,i],2), + cex=1.2, + font=2) + } + else{ + rect(xleft=i-.5,xright=i+.5,ybottom=k-j+1.5,ytop=k-j+.5) + text(i,k-j+1,round(coeff[j,i],2),cex=1.2,font=1) + } + } + axis(3,1:n,noms) + par(mar=c(0.5,0,0,0.5)) + plot(0,axes=F,xlab='',ylab='',type='n',xlim=c(0,8),ylim=c(-.2,.8)) + cols <- c('green','orange','red','black') + niv <- c('0','0.01','0.05','0.1') + for(i in 0:3){ + polygon(c(1+2*i ,1+2*i ,1+2*i-.5 ,1+2*i), + c(.4 ,.7 , .4 , .4), + col=cols[i+1]) + text(2*i,0.5,niv[i+1],cex=1.5) + } + text(8,.5,1,cex=1.5) + text(4,0,'p-value',cex=2) + box() + residus <- arimaSelect.out[[3]][[choix]]$res + par(mar=c(1,2,4,1)) + acf(residus,main='') + title('acf',line=.5) + par(mar=c(1,2,4,1)) + pacf(residus,main='') + title('pacf',line=.5) + par(mar=c(2,2,4,1)) + qqnorm(residus,main='') + title('qq-norm',line=.5) + residus + } > if (par2 == 0) x <- log(x) > if (par2 != 0) x <- x^par2 > (selection <- arimaSelect(x, order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5))) [[1]] [,1] [,2] [,3] [,4] [,5] [,6] [,7] [1,] 1.475273 -0.5289809 0.05166991 -0.9188235 1.1460737 -0.1483906 -0.9185875 [2,] 0.000000 0.6760188 0.26816525 0.6897432 1.1074840 -0.1115091 -0.8809673 [3,] 0.000000 0.6813565 0.25998311 0.6929739 0.9851382 0.0000000 -0.7556083 [4,] NA NA NA NA NA NA NA [5,] NA NA NA NA NA NA NA [6,] NA NA NA NA NA NA NA [7,] NA NA NA NA NA NA NA [[2]] [,1] [,2] [,3] [,4] [,5] [,6] [,7] [1,] 0 0 0.00000 0 0 0.00000 0.00000 [2,] NA 0 0.01829 0 0 0.51064 0.00000 [3,] NA 0 0.01955 0 0 NA 0.00579 [4,] NA NA NA NA NA NA NA [5,] NA NA NA NA NA NA NA [6,] NA NA NA NA NA NA NA [7,] NA NA NA NA NA NA NA [[3]] [[3]][[1]] Call: arima(x = series, order = order, seasonal = seasonal, include.mean = include.mean, method = "ML") Coefficients: ar1 ar2 ar3 ma1 sar1 sar2 sma1 1.4753 -0.5290 0.0517 -0.9188 1.1461 -0.1484 -0.9186 s.e. 0.0052 0.0147 0.0085 0.0321 0.0132 0.0132 0.0202 sigma^2 estimated as 107375: log likelihood = -532.31, aic = 1080.61 [[3]][[2]] Call: arima(x = series, order = order, seasonal = seasonal, include.mean = include.mean, method = "ML") Coefficients: ar1 ar2 ar3 ma1 sar1 sar2 sma1 1.4753 -0.5290 0.0517 -0.9188 1.1461 -0.1484 -0.9186 s.e. 0.0052 0.0147 0.0085 0.0321 0.0132 0.0132 0.0202 sigma^2 estimated as 107375: log likelihood = -532.31, aic = 1080.61 [[3]][[3]] Call: arima(x = series, order = order, seasonal = seasonal, include.mean = include.mean, fixed = last.arma$next.vector, method = "ML") Coefficients: ar1 ar2 ar3 ma1 sar1 sar2 sma1 0 0.6760 0.2682 0.6897 1.1075 -0.1115 -0.8810 s.e. 0 0.1124 0.1108 0.1245 0.1690 0.1686 0.0728 sigma^2 estimated as 123549: log likelihood = -537.09, aic = 1088.18 [[3]][[4]] NULL [[3]][[5]] NULL [[3]][[6]] NULL [[3]][[7]] NULL $aic [1] 1080.612 1088.183 1086.553 Warning messages: 1: In log(s2) : NaNs produced 2: In log(s2) : NaNs produced 3: In arima(series, order = order, seasonal = seasonal, include.mean = include.mean, : some AR parameters were fixed: setting transform.pars = FALSE 4: In log(s2) : NaNs produced 5: In log(s2) : NaNs produced 6: In log(s2) : NaNs produced 7: In arima(series, order = order, seasonal = seasonal, include.mean = include.mean, : some AR parameters were fixed: setting transform.pars = FALSE 8: In log(s2) : NaNs produced > postscript(file="/var/www/html/rcomp/tmp/1ob231196779831.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > resid <- arimaSelectplot(selection) > dev.off() null device 1 > resid Time Series: Start = 1 End = 72 Frequency = 1 [1] 417.1276580 -212.1946685 490.3298934 288.1254821 473.7327220 [6] 275.2351505 -482.7697074 -325.4207038 736.4075899 601.2762182 [11] -268.0649919 104.4145529 -369.2312673 170.8679793 -552.1970234 [16] -14.1643820 243.4579493 -18.3063524 25.3083499 -48.7486988 [21] -109.9989814 -144.2701333 -20.4779191 -268.5571494 73.4973075 [26] -299.5573504 529.5847063 -389.4883061 116.5132386 -37.3600499 [31] 548.7624087 199.9337172 -90.2814989 -320.9469044 343.8742441 [36] -738.3541273 282.7378253 -22.5653465 186.5756934 252.8273438 [41] 204.4043730 -22.1718179 -142.3050927 418.2095753 -277.2308432 [46] -390.3881968 -1062.2030918 -231.4189839 923.4518999 -48.1622191 [51] 98.1488332 270.3093888 -81.6135796 327.6916895 0.4536294 [56] 208.7454411 -248.1506946 -411.2939335 411.9981643 -95.1780902 [61] -648.4748617 -220.0882818 113.5314847 186.5664013 480.4412445 [66] -91.5996792 -56.4463790 296.1064168 47.0509088 -385.0471959 [71] 11.3334402 317.3283122 > postscript(file="/var/www/html/rcomp/tmp/2gtyj1196779831.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > acf(resid,length(resid)/2, main='Residual Autocorrelation Function') > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/3h9bf1196779831.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > pacf(resid,length(resid)/2, main='Residual Partial Autocorrelation Function') > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/4mlip1196779831.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > cpgram(resid, main='Residual Cumulative Periodogram') > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/5o8fg1196779831.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > hist(resid, main='Residual Histogram', xlab='values of Residuals') > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/6ag3x1196779831.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > densityplot(~resid,col='black',main='Residual Density Plot', xlab='values of Residuals') > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/79i6e1196779831.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > qqnorm(resid, main='Residual Normal Q-Q Plot') > dev.off() null device 1 > ncols <- length(selection[[1]][1,]) > nrows <- length(selection[[2]][,1])-1 > load(file='/var/www/html/rcomp/createtable') > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'ARIMA Parameter Estimation and Backward Selection', ncols+1,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Iteration', header=TRUE) > for (i in 1:ncols) { + a<-table.element(a,names(selection[[3]][[1]]$coef)[i],header=TRUE) + } > a<-table.row.end(a) > for (j in 1:nrows) { + a<-table.row.start(a) + mydum <- 'Estimates (' + mydum <- paste(mydum,j) + mydum <- paste(mydum,')') + a<-table.element(a,mydum, header=TRUE) + for (i in 1:ncols) { + a<-table.element(a,round(selection[[1]][j,i],4)) + } + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'(p-val)', header=TRUE) + for (i in 1:ncols) { + mydum <- '(' + mydum <- paste(mydum,round(selection[[2]][j,i],4),sep='') + mydum <- paste(mydum,')') + a<-table.element(a,mydum) + } + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/8k2eo1196779831.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Estimated ARIMA Residuals', 1,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Value', 1,TRUE) > a<-table.row.end(a) > for (i in (par4*par5+par3):length(resid)) { + a<-table.row.start(a) + a<-table.element(a,resid[i]) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/90spt1196779831.tab") > > system("convert tmp/1ob231196779831.ps tmp/1ob231196779831.png") > system("convert tmp/2gtyj1196779831.ps tmp/2gtyj1196779831.png") > system("convert tmp/3h9bf1196779831.ps tmp/3h9bf1196779831.png") > system("convert tmp/4mlip1196779831.ps tmp/4mlip1196779831.png") > system("convert tmp/5o8fg1196779831.ps tmp/5o8fg1196779831.png") > system("convert tmp/6ag3x1196779831.ps tmp/6ag3x1196779831.png") > system("convert tmp/79i6e1196779831.ps tmp/79i6e1196779831.png") > > > proc.time() user system elapsed 6.851 1.709 7.867