R version 2.6.0 (2007-10-03)
Copyright (C) 2007 The R Foundation for Statistical Computing
ISBN 3-900051-07-0
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> x <- array(list(97.3,0,101,0,113.2,0,101,0,105.7,0,113.9,0,86.4,0,96.5,0,103.3,0,114.9,0,105.8,0,94.2,0,98.4,0,99.4,0,108.8,0,112.6,0,104.4,0,112.2,0,81.1,0,97.1,0,112.6,0,113.8,0,107.8,0,103.2,0,103.3,0,101.2,0,107.7,0,110.4,0,101.9,0,115.9,0,89.9,0,88.6,0,117.2,0,123.9,0,100,0,103.6,0,94.1,0,98.7,0,119.5,0,112.7,0,104.4,0,124.7,0,89.1,0,97,0,121.6,0,118.8,0,114,0,111.5,0,97.2,0,102.5,0,113.4,0,109.8,0,104.9,0,126.1,0,80,0,96.8,0,117.2,1,112.3,1,117.3,1,111.1,1,102.2,1,104.3,1,122.9,1,107.6,1,121.3,1,131.5,1,89,1,104.4,1,128.9,1,135.9,1,133.3,1,121.3,1,120.5,1,120.4,1,137.9,1,126.1,1,133.2,1,146.6,1,103.4,1,117.2,1),dim=c(2,80),dimnames=list(c('y','x
'),1:80))
>  y <- array(NA,dim=c(2,80),dimnames=list(c('y','x
'),1:80))
>  for (i in 1:dim(x)[1])
+  {
+  	for (j in 1:dim(x)[2])
+  	{
+  		y[i,j] <- as.numeric(x[i,j])
+  	}
+  }
> par3 = 'No Linear Trend'
> par2 = 'Include Monthly Dummies'
> par1 = '1'
> #'GNU S' R Code compiled by R2WASP v. 1.0.44 ()
> #Author: Prof. Dr. P. Wessa
> #To cite this work: AUTHOR(S), (YEAR), YOUR SOFTWARE TITLE (vNUMBER) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_YOURPAGE.wasp/
> #Source of accompanying publication: Office for Research, Development, and Education
> #Technical description: Write here your technical program description (don't use hard returns!)
> library(lattice)
> par1 <- as.numeric(par1)
> x <- t(y)
> k <- length(x[1,])
> n <- length(x[,1])
> x1 <- cbind(x[,par1], x[,1:k!=par1])
> mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
> colnames(x1) <- mycolnames #colnames(x)[par1]
> x <- x1
> if (par3 == 'First Differences'){
+ x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
+ for (i in 1:n-1) {
+ for (j in 1:k) {
+ x2[i,j] <- x[i+1,j] - x[i,j]
+ }
+ }
+ x <- x2
+ }
> if (par2 == 'Include Monthly Dummies'){
+ x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
+ for (i in 1:11){
+ x2[seq(i,n,12),i] <- 1
+ }
+ x <- cbind(x, x2)
+ }
> if (par2 == 'Include Quarterly Dummies'){
+ x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
+ for (i in 1:3){
+ x2[seq(i,n,4),i] <- 1
+ }
+ x <- cbind(x, x2)
+ }
> k <- length(x[1,])
> if (par3 == 'Linear Trend'){
+ x <- cbind(x, c(1:n))
+ colnames(x)[k+1] <- 't'
+ }
> x
       y x\r M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11
1   97.3   0  1  0  0  0  0  0  0  0  0   0   0
2  101.0   0  0  1  0  0  0  0  0  0  0   0   0
3  113.2   0  0  0  1  0  0  0  0  0  0   0   0
4  101.0   0  0  0  0  1  0  0  0  0  0   0   0
5  105.7   0  0  0  0  0  1  0  0  0  0   0   0
6  113.9   0  0  0  0  0  0  1  0  0  0   0   0
7   86.4   0  0  0  0  0  0  0  1  0  0   0   0
8   96.5   0  0  0  0  0  0  0  0  1  0   0   0
9  103.3   0  0  0  0  0  0  0  0  0  1   0   0
10 114.9   0  0  0  0  0  0  0  0  0  0   1   0
11 105.8   0  0  0  0  0  0  0  0  0  0   0   1
12  94.2   0  0  0  0  0  0  0  0  0  0   0   0
13  98.4   0  1  0  0  0  0  0  0  0  0   0   0
14  99.4   0  0  1  0  0  0  0  0  0  0   0   0
15 108.8   0  0  0  1  0  0  0  0  0  0   0   0
16 112.6   0  0  0  0  1  0  0  0  0  0   0   0
17 104.4   0  0  0  0  0  1  0  0  0  0   0   0
18 112.2   0  0  0  0  0  0  1  0  0  0   0   0
19  81.1   0  0  0  0  0  0  0  1  0  0   0   0
20  97.1   0  0  0  0  0  0  0  0  1  0   0   0
21 112.6   0  0  0  0  0  0  0  0  0  1   0   0
22 113.8   0  0  0  0  0  0  0  0  0  0   1   0
23 107.8   0  0  0  0  0  0  0  0  0  0   0   1
24 103.2   0  0  0  0  0  0  0  0  0  0   0   0
25 103.3   0  1  0  0  0  0  0  0  0  0   0   0
26 101.2   0  0  1  0  0  0  0  0  0  0   0   0
27 107.7   0  0  0  1  0  0  0  0  0  0   0   0
28 110.4   0  0  0  0  1  0  0  0  0  0   0   0
29 101.9   0  0  0  0  0  1  0  0  0  0   0   0
30 115.9   0  0  0  0  0  0  1  0  0  0   0   0
31  89.9   0  0  0  0  0  0  0  1  0  0   0   0
32  88.6   0  0  0  0  0  0  0  0  1  0   0   0
33 117.2   0  0  0  0  0  0  0  0  0  1   0   0
34 123.9   0  0  0  0  0  0  0  0  0  0   1   0
35 100.0   0  0  0  0  0  0  0  0  0  0   0   1
36 103.6   0  0  0  0  0  0  0  0  0  0   0   0
37  94.1   0  1  0  0  0  0  0  0  0  0   0   0
38  98.7   0  0  1  0  0  0  0  0  0  0   0   0
39 119.5   0  0  0  1  0  0  0  0  0  0   0   0
40 112.7   0  0  0  0  1  0  0  0  0  0   0   0
41 104.4   0  0  0  0  0  1  0  0  0  0   0   0
42 124.7   0  0  0  0  0  0  1  0  0  0   0   0
43  89.1   0  0  0  0  0  0  0  1  0  0   0   0
44  97.0   0  0  0  0  0  0  0  0  1  0   0   0
45 121.6   0  0  0  0  0  0  0  0  0  1   0   0
46 118.8   0  0  0  0  0  0  0  0  0  0   1   0
47 114.0   0  0  0  0  0  0  0  0  0  0   0   1
48 111.5   0  0  0  0  0  0  0  0  0  0   0   0
49  97.2   0  1  0  0  0  0  0  0  0  0   0   0
50 102.5   0  0  1  0  0  0  0  0  0  0   0   0
51 113.4   0  0  0  1  0  0  0  0  0  0   0   0
52 109.8   0  0  0  0  1  0  0  0  0  0   0   0
53 104.9   0  0  0  0  0  1  0  0  0  0   0   0
54 126.1   0  0  0  0  0  0  1  0  0  0   0   0
55  80.0   0  0  0  0  0  0  0  1  0  0   0   0
56  96.8   0  0  0  0  0  0  0  0  1  0   0   0
57 117.2   1  0  0  0  0  0  0  0  0  1   0   0
58 112.3   1  0  0  0  0  0  0  0  0  0   1   0
59 117.3   1  0  0  0  0  0  0  0  0  0   0   1
60 111.1   1  0  0  0  0  0  0  0  0  0   0   0
61 102.2   1  1  0  0  0  0  0  0  0  0   0   0
62 104.3   1  0  1  0  0  0  0  0  0  0   0   0
63 122.9   1  0  0  1  0  0  0  0  0  0   0   0
64 107.6   1  0  0  0  1  0  0  0  0  0   0   0
65 121.3   1  0  0  0  0  1  0  0  0  0   0   0
66 131.5   1  0  0  0  0  0  1  0  0  0   0   0
67  89.0   1  0  0  0  0  0  0  1  0  0   0   0
68 104.4   1  0  0  0  0  0  0  0  1  0   0   0
69 128.9   1  0  0  0  0  0  0  0  0  1   0   0
70 135.9   1  0  0  0  0  0  0  0  0  0   1   0
71 133.3   1  0  0  0  0  0  0  0  0  0   0   1
72 121.3   1  0  0  0  0  0  0  0  0  0   0   0
73 120.5   1  1  0  0  0  0  0  0  0  0   0   0
74 120.4   1  0  1  0  0  0  0  0  0  0   0   0
75 137.9   1  0  0  1  0  0  0  0  0  0   0   0
76 126.1   1  0  0  0  1  0  0  0  0  0   0   0
77 133.2   1  0  0  0  0  1  0  0  0  0   0   0
78 146.6   1  0  0  0  0  0  1  0  0  0   0   0
79 103.4   1  0  0  0  0  0  0  1  0  0   0   0
80 117.2   1  0  0  0  0  0  0  0  1  0   0   0
> k <- length(x[1,])
> df <- as.data.frame(x)
> (mylm <- lm(df))
Call:
lm(formula = df)
Coefficients:
(Intercept)        `x\r`           M1           M2           M3           M4  
    102.811       14.016       -4.959       -2.887       10.813        4.641  
         M5           M6           M7           M8           M9          M10  
      4.013       17.598      -18.402       -7.159        9.317       12.450  
        M11  
      5.550  
> (mysum <- summary(mylm))
Call:
lm(formula = df)
Residuals:
     Min       1Q   Median       3Q      Max 
-16.9771  -4.5673   0.4244   4.7613  12.3603 
Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  102.811      2.755  37.317  < 2e-16 ***
`x\r`         14.016      1.616   8.670 1.49e-12 ***
M1            -4.959      3.683  -1.346  0.18269    
M2            -2.887      3.683  -0.784  0.43580    
M3            10.813      3.683   2.936  0.00455 ** 
M4             4.641      3.683   1.260  0.21195    
M5             4.013      3.683   1.090  0.27981    
M6            17.598      3.683   4.779 1.00e-05 ***
M7           -18.402      3.683  -4.997 4.43e-06 ***
M8            -7.159      3.683  -1.944  0.05612 .  
M9             9.317      3.821   2.438  0.01742 *  
M10           12.450      3.821   3.258  0.00176 ** 
M11            5.550      3.821   1.453  0.15103    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
Residual standard error: 6.618 on 67 degrees of freedom
Multiple R-Squared: 0.7869,	Adjusted R-squared: 0.7488 
F-statistic: 20.62 on 12 and 67 DF,  p-value: < 2.2e-16 
> postscript(file="/var/www/html/rcomp/tmp/1ueml1196781355.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
> points(x[,1]-mysum$resid)
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/2o3931196781355.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/3qzys1196781355.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/4mo4s1196781355.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/5f4be1196781355.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
> grid()
> dev.off()
null device 
          1 
> (myerror <- as.ts(mysum$resid))
Time Series:
Start = 1 
End = 80 
Frequency = 1 
          1           2           3           4           5           6 
 -0.5526786   1.0758929  -0.4241071  -6.4526786  -1.1241071  -6.5098214 
          7           8           9          10          11          12 
  1.9901786   0.8473214  -8.8281250  -0.3614583  -2.5614583  -8.6114583 
         13          14          15          16          17          18 
  0.5473214  -0.5241071  -4.8241071   5.1473214  -2.4241071  -8.2098214 
         19          20          21          22          23          24 
 -3.3098214   1.4473214   0.4718750  -1.4614583  -0.5614583   0.3885417 
         25          26          27          28          29          30 
  5.4473214   1.2758929  -5.9241071   2.9473214  -4.9241071  -4.5098214 
         31          32          33          34          35          36 
  5.4901786  -7.0526786   5.0718750   8.6385417  -8.3614583   0.7885417 
         37          38          39          40          41          42 
 -3.7526786  -1.2241071   5.8758929   5.2473214  -2.4241071   4.2901786 
         43          44          45          46          47          48 
  4.6901786   1.3473214   9.4718750   3.5385417   5.6385417   8.6885417 
         49          50          51          52          53          54 
 -0.6526786   2.5758929  -0.2241071   2.3473214  -1.9241071   5.6901786 
         55          56          57          58          59          60 
 -4.4098214   1.1473214  -8.9437500 -16.9770833  -5.0770833  -5.7270833 
         61          62          63          64          65          66 
 -9.6683036  -9.6397321  -4.7397321 -13.8683036   0.4602679  -2.9254464 
         67          68          69          70          71          72 
 -9.4254464  -5.2683036   2.7562500   6.6229167  10.9229167   4.4729167 
         73          74          75          76          77          78 
  8.6316964   6.4602679  10.2602679   4.6316964  12.3602679  12.1745536 
         79          80 
  4.9745536   7.5316964 
> postscript(file="/var/www/html/rcomp/tmp/6ebdp1196781355.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> dum <- cbind(lag(myerror,k=1),myerror)
> dum
Time Series:
Start = 0 
End = 80 
Frequency = 1 
   lag(myerror, k = 1)     myerror
 0          -0.5526786          NA
 1           1.0758929  -0.5526786
 2          -0.4241071   1.0758929
 3          -6.4526786  -0.4241071
 4          -1.1241071  -6.4526786
 5          -6.5098214  -1.1241071
 6           1.9901786  -6.5098214
 7           0.8473214   1.9901786
 8          -8.8281250   0.8473214
 9          -0.3614583  -8.8281250
10          -2.5614583  -0.3614583
11          -8.6114583  -2.5614583
12           0.5473214  -8.6114583
13          -0.5241071   0.5473214
14          -4.8241071  -0.5241071
15           5.1473214  -4.8241071
16          -2.4241071   5.1473214
17          -8.2098214  -2.4241071
18          -3.3098214  -8.2098214
19           1.4473214  -3.3098214
20           0.4718750   1.4473214
21          -1.4614583   0.4718750
22          -0.5614583  -1.4614583
23           0.3885417  -0.5614583
24           5.4473214   0.3885417
25           1.2758929   5.4473214
26          -5.9241071   1.2758929
27           2.9473214  -5.9241071
28          -4.9241071   2.9473214
29          -4.5098214  -4.9241071
30           5.4901786  -4.5098214
31          -7.0526786   5.4901786
32           5.0718750  -7.0526786
33           8.6385417   5.0718750
34          -8.3614583   8.6385417
35           0.7885417  -8.3614583
36          -3.7526786   0.7885417
37          -1.2241071  -3.7526786
38           5.8758929  -1.2241071
39           5.2473214   5.8758929
40          -2.4241071   5.2473214
41           4.2901786  -2.4241071
42           4.6901786   4.2901786
43           1.3473214   4.6901786
44           9.4718750   1.3473214
45           3.5385417   9.4718750
46           5.6385417   3.5385417
47           8.6885417   5.6385417
48          -0.6526786   8.6885417
49           2.5758929  -0.6526786
50          -0.2241071   2.5758929
51           2.3473214  -0.2241071
52          -1.9241071   2.3473214
53           5.6901786  -1.9241071
54          -4.4098214   5.6901786
55           1.1473214  -4.4098214
56          -8.9437500   1.1473214
57         -16.9770833  -8.9437500
58          -5.0770833 -16.9770833
59          -5.7270833  -5.0770833
60          -9.6683036  -5.7270833
61          -9.6397321  -9.6683036
62          -4.7397321  -9.6397321
63         -13.8683036  -4.7397321
64           0.4602679 -13.8683036
65          -2.9254464   0.4602679
66          -9.4254464  -2.9254464
67          -5.2683036  -9.4254464
68           2.7562500  -5.2683036
69           6.6229167   2.7562500
70          10.9229167   6.6229167
71           4.4729167  10.9229167
72           8.6316964   4.4729167
73           6.4602679   8.6316964
74          10.2602679   6.4602679
75           4.6316964  10.2602679
76          12.3602679   4.6316964
77          12.1745536  12.3602679
78           4.9745536  12.1745536
79           7.5316964   4.9745536
80                  NA   7.5316964
> dum1 <- dum[2:length(myerror),]
> dum1
      lag(myerror, k = 1)     myerror
 [1,]           1.0758929  -0.5526786
 [2,]          -0.4241071   1.0758929
 [3,]          -6.4526786  -0.4241071
 [4,]          -1.1241071  -6.4526786
 [5,]          -6.5098214  -1.1241071
 [6,]           1.9901786  -6.5098214
 [7,]           0.8473214   1.9901786
 [8,]          -8.8281250   0.8473214
 [9,]          -0.3614583  -8.8281250
[10,]          -2.5614583  -0.3614583
[11,]          -8.6114583  -2.5614583
[12,]           0.5473214  -8.6114583
[13,]          -0.5241071   0.5473214
[14,]          -4.8241071  -0.5241071
[15,]           5.1473214  -4.8241071
[16,]          -2.4241071   5.1473214
[17,]          -8.2098214  -2.4241071
[18,]          -3.3098214  -8.2098214
[19,]           1.4473214  -3.3098214
[20,]           0.4718750   1.4473214
[21,]          -1.4614583   0.4718750
[22,]          -0.5614583  -1.4614583
[23,]           0.3885417  -0.5614583
[24,]           5.4473214   0.3885417
[25,]           1.2758929   5.4473214
[26,]          -5.9241071   1.2758929
[27,]           2.9473214  -5.9241071
[28,]          -4.9241071   2.9473214
[29,]          -4.5098214  -4.9241071
[30,]           5.4901786  -4.5098214
[31,]          -7.0526786   5.4901786
[32,]           5.0718750  -7.0526786
[33,]           8.6385417   5.0718750
[34,]          -8.3614583   8.6385417
[35,]           0.7885417  -8.3614583
[36,]          -3.7526786   0.7885417
[37,]          -1.2241071  -3.7526786
[38,]           5.8758929  -1.2241071
[39,]           5.2473214   5.8758929
[40,]          -2.4241071   5.2473214
[41,]           4.2901786  -2.4241071
[42,]           4.6901786   4.2901786
[43,]           1.3473214   4.6901786
[44,]           9.4718750   1.3473214
[45,]           3.5385417   9.4718750
[46,]           5.6385417   3.5385417
[47,]           8.6885417   5.6385417
[48,]          -0.6526786   8.6885417
[49,]           2.5758929  -0.6526786
[50,]          -0.2241071   2.5758929
[51,]           2.3473214  -0.2241071
[52,]          -1.9241071   2.3473214
[53,]           5.6901786  -1.9241071
[54,]          -4.4098214   5.6901786
[55,]           1.1473214  -4.4098214
[56,]          -8.9437500   1.1473214
[57,]         -16.9770833  -8.9437500
[58,]          -5.0770833 -16.9770833
[59,]          -5.7270833  -5.0770833
[60,]          -9.6683036  -5.7270833
[61,]          -9.6397321  -9.6683036
[62,]          -4.7397321  -9.6397321
[63,]         -13.8683036  -4.7397321
[64,]           0.4602679 -13.8683036
[65,]          -2.9254464   0.4602679
[66,]          -9.4254464  -2.9254464
[67,]          -5.2683036  -9.4254464
[68,]           2.7562500  -5.2683036
[69,]           6.6229167   2.7562500
[70,]          10.9229167   6.6229167
[71,]           4.4729167  10.9229167
[72,]           8.6316964   4.4729167
[73,]           6.4602679   8.6316964
[74,]          10.2602679   6.4602679
[75,]           4.6316964  10.2602679
[76,]          12.3602679   4.6316964
[77,]          12.1745536  12.3602679
[78,]           4.9745536  12.1745536
[79,]           7.5316964   4.9745536
> z <- as.data.frame(dum1)
> z
   lag(myerror, k = 1)     myerror
1            1.0758929  -0.5526786
2           -0.4241071   1.0758929
3           -6.4526786  -0.4241071
4           -1.1241071  -6.4526786
5           -6.5098214  -1.1241071
6            1.9901786  -6.5098214
7            0.8473214   1.9901786
8           -8.8281250   0.8473214
9           -0.3614583  -8.8281250
10          -2.5614583  -0.3614583
11          -8.6114583  -2.5614583
12           0.5473214  -8.6114583
13          -0.5241071   0.5473214
14          -4.8241071  -0.5241071
15           5.1473214  -4.8241071
16          -2.4241071   5.1473214
17          -8.2098214  -2.4241071
18          -3.3098214  -8.2098214
19           1.4473214  -3.3098214
20           0.4718750   1.4473214
21          -1.4614583   0.4718750
22          -0.5614583  -1.4614583
23           0.3885417  -0.5614583
24           5.4473214   0.3885417
25           1.2758929   5.4473214
26          -5.9241071   1.2758929
27           2.9473214  -5.9241071
28          -4.9241071   2.9473214
29          -4.5098214  -4.9241071
30           5.4901786  -4.5098214
31          -7.0526786   5.4901786
32           5.0718750  -7.0526786
33           8.6385417   5.0718750
34          -8.3614583   8.6385417
35           0.7885417  -8.3614583
36          -3.7526786   0.7885417
37          -1.2241071  -3.7526786
38           5.8758929  -1.2241071
39           5.2473214   5.8758929
40          -2.4241071   5.2473214
41           4.2901786  -2.4241071
42           4.6901786   4.2901786
43           1.3473214   4.6901786
44           9.4718750   1.3473214
45           3.5385417   9.4718750
46           5.6385417   3.5385417
47           8.6885417   5.6385417
48          -0.6526786   8.6885417
49           2.5758929  -0.6526786
50          -0.2241071   2.5758929
51           2.3473214  -0.2241071
52          -1.9241071   2.3473214
53           5.6901786  -1.9241071
54          -4.4098214   5.6901786
55           1.1473214  -4.4098214
56          -8.9437500   1.1473214
57         -16.9770833  -8.9437500
58          -5.0770833 -16.9770833
59          -5.7270833  -5.0770833
60          -9.6683036  -5.7270833
61          -9.6397321  -9.6683036
62          -4.7397321  -9.6397321
63         -13.8683036  -4.7397321
64           0.4602679 -13.8683036
65          -2.9254464   0.4602679
66          -9.4254464  -2.9254464
67          -5.2683036  -9.4254464
68           2.7562500  -5.2683036
69           6.6229167   2.7562500
70          10.9229167   6.6229167
71           4.4729167  10.9229167
72           8.6316964   4.4729167
73           6.4602679   8.6316964
74          10.2602679   6.4602679
75           4.6316964  10.2602679
76          12.3602679   4.6316964
77          12.1745536  12.3602679
78           4.9745536  12.1745536
79           7.5316964   4.9745536
> plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
> lines(lowess(z))
> abline(lm(z))
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/7pkhq1196781355.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/86iqz1196781355.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/9z0851196781355.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
> plot(mylm, las = 1, sub='Residual Diagnostics')
> par(opar)
> dev.off()
null device 
          1 
> load(file='/var/www/html/rcomp/createtable')
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
> a<-table.row.end(a)
> myeq <- colnames(x)[1]
> myeq <- paste(myeq, '[t] = ', sep='')
> for (i in 1:k){
+ if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
+ myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
+ if (rownames(mysum$coefficients)[i] != '(Intercept)') {
+ myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
+ if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
+ }
+ }
> myeq <- paste(myeq, ' + e[t]')
> a<-table.row.start(a)
> a<-table.element(a, myeq)
> a<-table.row.end(a)
> a<-table.end(a)
> table.save(a,file="/var/www/html/rcomp/tmp/10apni1196781356.tab") 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a,'Variable',header=TRUE)
> a<-table.element(a,'Parameter',header=TRUE)
> a<-table.element(a,'S.D.',header=TRUE)
> a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
> a<-table.element(a,'2-tail p-value',header=TRUE)
> a<-table.element(a,'1-tail p-value',header=TRUE)
> a<-table.row.end(a)
> for (i in 1:k){
+ a<-table.row.start(a)
+ a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
+ a<-table.element(a,mysum$coefficients[i,1])
+ a<-table.element(a, round(mysum$coefficients[i,2],6))
+ a<-table.element(a, round(mysum$coefficients[i,3],4))
+ a<-table.element(a, round(mysum$coefficients[i,4],6))
+ a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
+ a<-table.row.end(a)
+ }
> a<-table.end(a)
> table.save(a,file="/var/www/html/rcomp/tmp/119ufq1196781356.tab") 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple R',1,TRUE)
> a<-table.element(a, sqrt(mysum$r.squared))
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'R-squared',1,TRUE)
> a<-table.element(a, mysum$r.squared)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Adjusted R-squared',1,TRUE)
> a<-table.element(a, mysum$adj.r.squared)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'F-TEST (value)',1,TRUE)
> a<-table.element(a, mysum$fstatistic[1])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
> a<-table.element(a, mysum$fstatistic[2])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
> a<-table.element(a, mysum$fstatistic[3])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'p-value',1,TRUE)
> a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
> a<-table.element(a, mysum$sigma)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
> a<-table.element(a, sum(myerror*myerror))
> a<-table.row.end(a)
> a<-table.end(a)
> table.save(a,file="/var/www/html/rcomp/tmp/12j6ne1196781356.tab") 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Time or Index', 1, TRUE)
> a<-table.element(a, 'Actuals', 1, TRUE)
> a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
> a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
> a<-table.row.end(a)
> for (i in 1:n) {
+ a<-table.row.start(a)
+ a<-table.element(a,i, 1, TRUE)
+ a<-table.element(a,x[i])
+ a<-table.element(a,x[i]-mysum$resid[i])
+ a<-table.element(a,mysum$resid[i])
+ a<-table.row.end(a)
+ }
> a<-table.end(a)
> table.save(a,file="/var/www/html/rcomp/tmp/13wq4h1196781356.tab") 
> 
> system("convert tmp/1ueml1196781355.ps tmp/1ueml1196781355.png")
> system("convert tmp/2o3931196781355.ps tmp/2o3931196781355.png")
> system("convert tmp/3qzys1196781355.ps tmp/3qzys1196781355.png")
> system("convert tmp/4mo4s1196781355.ps tmp/4mo4s1196781355.png")
> system("convert tmp/5f4be1196781355.ps tmp/5f4be1196781355.png")
> system("convert tmp/6ebdp1196781355.ps tmp/6ebdp1196781355.png")
> system("convert tmp/7pkhq1196781355.ps tmp/7pkhq1196781355.png")
> system("convert tmp/86iqz1196781355.ps tmp/86iqz1196781355.png")
> system("convert tmp/9z0851196781355.ps tmp/9z0851196781355.png")
> 
> 
> proc.time()
   user  system elapsed 
  2.368   1.471   2.731