R version 2.6.0 (2007-10-03) Copyright (C) 2007 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- array(list(97.3,0,101,0,113.2,0,101,0,105.7,0,113.9,0,86.4,0,96.5,0,103.3,0,114.9,0,105.8,0,94.2,0,98.4,0,99.4,0,108.8,0,112.6,0,104.4,0,112.2,0,81.1,0,97.1,0,112.6,0,113.8,0,107.8,0,103.2,0,103.3,0,101.2,0,107.7,0,110.4,0,101.9,0,115.9,0,89.9,0,88.6,0,117.2,0,123.9,0,100,0,103.6,0,94.1,0,98.7,0,119.5,0,112.7,0,104.4,0,124.7,0,89.1,0,97,0,121.6,0,118.8,0,114,0,111.5,0,97.2,0,102.5,0,113.4,0,109.8,0,104.9,0,126.1,0,80,0,96.8,0,117.2,1,112.3,1,117.3,1,111.1,1,102.2,1,104.3,1,122.9,1,107.6,1,121.3,1,131.5,1,89,1,104.4,1,128.9,1,135.9,1,133.3,1,121.3,1,120.5,1,120.4,1,137.9,1,126.1,1,133.2,1,146.6,1,103.4,1,117.2,1),dim=c(2,80),dimnames=list(c('y','x '),1:80)) > y <- array(NA,dim=c(2,80),dimnames=list(c('y','x '),1:80)) > for (i in 1:dim(x)[1]) + { + for (j in 1:dim(x)[2]) + { + y[i,j] <- as.numeric(x[i,j]) + } + } > par3 = 'Linear Trend' > par2 = 'Do not include Seasonal Dummies' > par1 = '1' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: AUTHOR(S), (YEAR), YOUR SOFTWARE TITLE (vNUMBER) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_YOURPAGE.wasp/ > #Source of accompanying publication: Office for Research, Development, and Education > #Technical description: Write here your technical program description (don't use hard returns!) > library(lattice) > par1 <- as.numeric(par1) > x <- t(y) > k <- length(x[1,]) > n <- length(x[,1]) > x1 <- cbind(x[,par1], x[,1:k!=par1]) > mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1]) > colnames(x1) <- mycolnames #colnames(x)[par1] > x <- x1 > if (par3 == 'First Differences'){ + x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep=''))) + for (i in 1:n-1) { + for (j in 1:k) { + x2[i,j] <- x[i+1,j] - x[i,j] + } + } + x <- x2 + } > if (par2 == 'Include Monthly Dummies'){ + x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep =''))) + for (i in 1:11){ + x2[seq(i,n,12),i] <- 1 + } + x <- cbind(x, x2) + } > if (par2 == 'Include Quarterly Dummies'){ + x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep =''))) + for (i in 1:3){ + x2[seq(i,n,4),i] <- 1 + } + x <- cbind(x, x2) + } > k <- length(x[1,]) > if (par3 == 'Linear Trend'){ + x <- cbind(x, c(1:n)) + colnames(x)[k+1] <- 't' + } > x y x\r t 1 97.3 0 1 2 101.0 0 2 3 113.2 0 3 4 101.0 0 4 5 105.7 0 5 6 113.9 0 6 7 86.4 0 7 8 96.5 0 8 9 103.3 0 9 10 114.9 0 10 11 105.8 0 11 12 94.2 0 12 13 98.4 0 13 14 99.4 0 14 15 108.8 0 15 16 112.6 0 16 17 104.4 0 17 18 112.2 0 18 19 81.1 0 19 20 97.1 0 20 21 112.6 0 21 22 113.8 0 22 23 107.8 0 23 24 103.2 0 24 25 103.3 0 25 26 101.2 0 26 27 107.7 0 27 28 110.4 0 28 29 101.9 0 29 30 115.9 0 30 31 89.9 0 31 32 88.6 0 32 33 117.2 0 33 34 123.9 0 34 35 100.0 0 35 36 103.6 0 36 37 94.1 0 37 38 98.7 0 38 39 119.5 0 39 40 112.7 0 40 41 104.4 0 41 42 124.7 0 42 43 89.1 0 43 44 97.0 0 44 45 121.6 0 45 46 118.8 0 46 47 114.0 0 47 48 111.5 0 48 49 97.2 0 49 50 102.5 0 50 51 113.4 0 51 52 109.8 0 52 53 104.9 0 53 54 126.1 0 54 55 80.0 0 55 56 96.8 0 56 57 117.2 1 57 58 112.3 1 58 59 117.3 1 59 60 111.1 1 60 61 102.2 1 61 62 104.3 1 62 63 122.9 1 63 64 107.6 1 64 65 121.3 1 65 66 131.5 1 66 67 89.0 1 67 68 104.4 1 68 69 128.9 1 69 70 135.9 1 70 71 133.3 1 71 72 121.3 1 72 73 120.5 1 73 74 120.4 1 74 75 137.9 1 75 76 126.1 1 76 77 133.2 1 77 78 146.6 1 78 79 103.4 1 79 80 117.2 1 80 > k <- length(x[1,]) > df <- as.data.frame(x) > (mylm <- lm(df)) Call: lm(formula = df) Coefficients: (Intercept) `x\r` t 101.1121 8.7370 0.1396 > (mysum <- summary(mylm)) Call: lm(formula = df) Residuals: Min 1Q Median 3Q Max -30.1990 -6.1980 0.3439 8.7458 25.8659 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 101.11211 3.00393 33.660 <2e-16 *** `x\r` 8.73705 4.57647 1.909 0.060 . t 0.13955 0.09082 1.537 0.128 --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 11.41 on 77 degrees of freedom Multiple R-Squared: 0.2724, Adjusted R-squared: 0.2535 F-statistic: 14.41 on 2 and 77 DF, p-value: 4.819e-06 > postscript(file="/var/www/html/rcomp/tmp/1ukqc1196781536.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index') > points(x[,1]-mysum$resid) > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/2pv2f1196781536.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index') > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/39y801196781536.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals') > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/4anbf1196781536.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals') > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/5nqzq1196781536.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > qqnorm(mysum$resid, main='Residual Normal Q-Q Plot') > grid() > dev.off() null device 1 > (myerror <- as.ts(mysum$resid)) Time Series: Start = 1 End = 80 Frequency = 1 1 2 3 4 5 6 -3.9516590 -0.3912090 11.6692409 -0.6703092 3.8901408 11.9505907 7 8 9 10 11 12 -15.6889594 -5.7285094 0.9319405 12.3923905 3.1528404 -8.5867097 13 14 15 16 17 18 -4.5262597 -3.6658098 5.5946401 9.2550901 0.9155400 8.5759900 19 20 21 22 23 24 -22.6635601 -6.8031102 8.5573398 9.6177897 3.4782396 -1.2613104 25 26 27 28 29 30 -1.3008605 -3.5404106 2.8200394 5.3804893 -3.2590607 10.6013892 31 32 33 34 35 36 -15.5381609 -16.9777109 11.4827390 18.0431889 -5.9963611 -2.5359112 37 38 39 40 41 42 -12.1754613 -7.7150113 12.9454386 6.0058886 -2.4336615 17.7267884 43 44 45 46 47 48 -18.0127616 -10.2523117 14.2081382 11.2685882 6.3290381 3.6894880 49 50 51 52 53 54 -10.7500620 -5.5896121 5.1708379 1.4312878 -3.6082623 17.4521877 55 56 57 58 59 60 -28.7873624 -12.1269125 -0.6035076 -5.6430577 -0.7826077 -7.1221578 61 62 63 64 65 66 -16.1617079 -14.2012579 4.2591920 -11.1803580 2.3800919 12.4405418 67 68 69 70 71 72 -30.1990082 -14.9385583 9.4218916 16.2823416 13.5427915 1.4032414 73 74 75 76 77 78 0.4636914 0.2241413 17.5845913 5.6450412 12.6054911 25.8659411 79 80 -17.4736090 -3.8131591 > postscript(file="/var/www/html/rcomp/tmp/6bkbx1196781536.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > dum <- cbind(lag(myerror,k=1),myerror) > dum Time Series: Start = 0 End = 80 Frequency = 1 lag(myerror, k = 1) myerror 0 -3.9516590 NA 1 -0.3912090 -3.9516590 2 11.6692409 -0.3912090 3 -0.6703092 11.6692409 4 3.8901408 -0.6703092 5 11.9505907 3.8901408 6 -15.6889594 11.9505907 7 -5.7285094 -15.6889594 8 0.9319405 -5.7285094 9 12.3923905 0.9319405 10 3.1528404 12.3923905 11 -8.5867097 3.1528404 12 -4.5262597 -8.5867097 13 -3.6658098 -4.5262597 14 5.5946401 -3.6658098 15 9.2550901 5.5946401 16 0.9155400 9.2550901 17 8.5759900 0.9155400 18 -22.6635601 8.5759900 19 -6.8031102 -22.6635601 20 8.5573398 -6.8031102 21 9.6177897 8.5573398 22 3.4782396 9.6177897 23 -1.2613104 3.4782396 24 -1.3008605 -1.2613104 25 -3.5404106 -1.3008605 26 2.8200394 -3.5404106 27 5.3804893 2.8200394 28 -3.2590607 5.3804893 29 10.6013892 -3.2590607 30 -15.5381609 10.6013892 31 -16.9777109 -15.5381609 32 11.4827390 -16.9777109 33 18.0431889 11.4827390 34 -5.9963611 18.0431889 35 -2.5359112 -5.9963611 36 -12.1754613 -2.5359112 37 -7.7150113 -12.1754613 38 12.9454386 -7.7150113 39 6.0058886 12.9454386 40 -2.4336615 6.0058886 41 17.7267884 -2.4336615 42 -18.0127616 17.7267884 43 -10.2523117 -18.0127616 44 14.2081382 -10.2523117 45 11.2685882 14.2081382 46 6.3290381 11.2685882 47 3.6894880 6.3290381 48 -10.7500620 3.6894880 49 -5.5896121 -10.7500620 50 5.1708379 -5.5896121 51 1.4312878 5.1708379 52 -3.6082623 1.4312878 53 17.4521877 -3.6082623 54 -28.7873624 17.4521877 55 -12.1269125 -28.7873624 56 -0.6035076 -12.1269125 57 -5.6430577 -0.6035076 58 -0.7826077 -5.6430577 59 -7.1221578 -0.7826077 60 -16.1617079 -7.1221578 61 -14.2012579 -16.1617079 62 4.2591920 -14.2012579 63 -11.1803580 4.2591920 64 2.3800919 -11.1803580 65 12.4405418 2.3800919 66 -30.1990082 12.4405418 67 -14.9385583 -30.1990082 68 9.4218916 -14.9385583 69 16.2823416 9.4218916 70 13.5427915 16.2823416 71 1.4032414 13.5427915 72 0.4636914 1.4032414 73 0.2241413 0.4636914 74 17.5845913 0.2241413 75 5.6450412 17.5845913 76 12.6054911 5.6450412 77 25.8659411 12.6054911 78 -17.4736090 25.8659411 79 -3.8131591 -17.4736090 80 NA -3.8131591 > dum1 <- dum[2:length(myerror),] > dum1 lag(myerror, k = 1) myerror [1,] -0.3912090 -3.9516590 [2,] 11.6692409 -0.3912090 [3,] -0.6703092 11.6692409 [4,] 3.8901408 -0.6703092 [5,] 11.9505907 3.8901408 [6,] -15.6889594 11.9505907 [7,] -5.7285094 -15.6889594 [8,] 0.9319405 -5.7285094 [9,] 12.3923905 0.9319405 [10,] 3.1528404 12.3923905 [11,] -8.5867097 3.1528404 [12,] -4.5262597 -8.5867097 [13,] -3.6658098 -4.5262597 [14,] 5.5946401 -3.6658098 [15,] 9.2550901 5.5946401 [16,] 0.9155400 9.2550901 [17,] 8.5759900 0.9155400 [18,] -22.6635601 8.5759900 [19,] -6.8031102 -22.6635601 [20,] 8.5573398 -6.8031102 [21,] 9.6177897 8.5573398 [22,] 3.4782396 9.6177897 [23,] -1.2613104 3.4782396 [24,] -1.3008605 -1.2613104 [25,] -3.5404106 -1.3008605 [26,] 2.8200394 -3.5404106 [27,] 5.3804893 2.8200394 [28,] -3.2590607 5.3804893 [29,] 10.6013892 -3.2590607 [30,] -15.5381609 10.6013892 [31,] -16.9777109 -15.5381609 [32,] 11.4827390 -16.9777109 [33,] 18.0431889 11.4827390 [34,] -5.9963611 18.0431889 [35,] -2.5359112 -5.9963611 [36,] -12.1754613 -2.5359112 [37,] -7.7150113 -12.1754613 [38,] 12.9454386 -7.7150113 [39,] 6.0058886 12.9454386 [40,] -2.4336615 6.0058886 [41,] 17.7267884 -2.4336615 [42,] -18.0127616 17.7267884 [43,] -10.2523117 -18.0127616 [44,] 14.2081382 -10.2523117 [45,] 11.2685882 14.2081382 [46,] 6.3290381 11.2685882 [47,] 3.6894880 6.3290381 [48,] -10.7500620 3.6894880 [49,] -5.5896121 -10.7500620 [50,] 5.1708379 -5.5896121 [51,] 1.4312878 5.1708379 [52,] -3.6082623 1.4312878 [53,] 17.4521877 -3.6082623 [54,] -28.7873624 17.4521877 [55,] -12.1269125 -28.7873624 [56,] -0.6035076 -12.1269125 [57,] -5.6430577 -0.6035076 [58,] -0.7826077 -5.6430577 [59,] -7.1221578 -0.7826077 [60,] -16.1617079 -7.1221578 [61,] -14.2012579 -16.1617079 [62,] 4.2591920 -14.2012579 [63,] -11.1803580 4.2591920 [64,] 2.3800919 -11.1803580 [65,] 12.4405418 2.3800919 [66,] -30.1990082 12.4405418 [67,] -14.9385583 -30.1990082 [68,] 9.4218916 -14.9385583 [69,] 16.2823416 9.4218916 [70,] 13.5427915 16.2823416 [71,] 1.4032414 13.5427915 [72,] 0.4636914 1.4032414 [73,] 0.2241413 0.4636914 [74,] 17.5845913 0.2241413 [75,] 5.6450412 17.5845913 [76,] 12.6054911 5.6450412 [77,] 25.8659411 12.6054911 [78,] -17.4736090 25.8659411 [79,] -3.8131591 -17.4736090 > z <- as.data.frame(dum1) > z lag(myerror, k = 1) myerror 1 -0.3912090 -3.9516590 2 11.6692409 -0.3912090 3 -0.6703092 11.6692409 4 3.8901408 -0.6703092 5 11.9505907 3.8901408 6 -15.6889594 11.9505907 7 -5.7285094 -15.6889594 8 0.9319405 -5.7285094 9 12.3923905 0.9319405 10 3.1528404 12.3923905 11 -8.5867097 3.1528404 12 -4.5262597 -8.5867097 13 -3.6658098 -4.5262597 14 5.5946401 -3.6658098 15 9.2550901 5.5946401 16 0.9155400 9.2550901 17 8.5759900 0.9155400 18 -22.6635601 8.5759900 19 -6.8031102 -22.6635601 20 8.5573398 -6.8031102 21 9.6177897 8.5573398 22 3.4782396 9.6177897 23 -1.2613104 3.4782396 24 -1.3008605 -1.2613104 25 -3.5404106 -1.3008605 26 2.8200394 -3.5404106 27 5.3804893 2.8200394 28 -3.2590607 5.3804893 29 10.6013892 -3.2590607 30 -15.5381609 10.6013892 31 -16.9777109 -15.5381609 32 11.4827390 -16.9777109 33 18.0431889 11.4827390 34 -5.9963611 18.0431889 35 -2.5359112 -5.9963611 36 -12.1754613 -2.5359112 37 -7.7150113 -12.1754613 38 12.9454386 -7.7150113 39 6.0058886 12.9454386 40 -2.4336615 6.0058886 41 17.7267884 -2.4336615 42 -18.0127616 17.7267884 43 -10.2523117 -18.0127616 44 14.2081382 -10.2523117 45 11.2685882 14.2081382 46 6.3290381 11.2685882 47 3.6894880 6.3290381 48 -10.7500620 3.6894880 49 -5.5896121 -10.7500620 50 5.1708379 -5.5896121 51 1.4312878 5.1708379 52 -3.6082623 1.4312878 53 17.4521877 -3.6082623 54 -28.7873624 17.4521877 55 -12.1269125 -28.7873624 56 -0.6035076 -12.1269125 57 -5.6430577 -0.6035076 58 -0.7826077 -5.6430577 59 -7.1221578 -0.7826077 60 -16.1617079 -7.1221578 61 -14.2012579 -16.1617079 62 4.2591920 -14.2012579 63 -11.1803580 4.2591920 64 2.3800919 -11.1803580 65 12.4405418 2.3800919 66 -30.1990082 12.4405418 67 -14.9385583 -30.1990082 68 9.4218916 -14.9385583 69 16.2823416 9.4218916 70 13.5427915 16.2823416 71 1.4032414 13.5427915 72 0.4636914 1.4032414 73 0.2241413 0.4636914 74 17.5845913 0.2241413 75 5.6450412 17.5845913 76 12.6054911 5.6450412 77 25.8659411 12.6054911 78 -17.4736090 25.8659411 79 -3.8131591 -17.4736090 > plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals') > lines(lowess(z)) > abline(lm(z)) > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/7je9u1196781536.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function') > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/8kueg1196781536.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function') > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/9hjc91196781536.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0)) > plot(mylm, las = 1, sub='Residual Diagnostics') > par(opar) > dev.off() null device 1 > load(file='/var/www/html/rcomp/createtable') > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE) > a<-table.row.end(a) > myeq <- colnames(x)[1] > myeq <- paste(myeq, '[t] = ', sep='') > for (i in 1:k){ + if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '') + myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ') + if (rownames(mysum$coefficients)[i] != '(Intercept)') { + myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='') + if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='') + } + } > myeq <- paste(myeq, ' + e[t]') > a<-table.row.start(a) > a<-table.element(a, myeq) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/10ugo21196781536.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Variable',header=TRUE) > a<-table.element(a,'Parameter',header=TRUE) > a<-table.element(a,'S.D.',header=TRUE) > a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE) > a<-table.element(a,'2-tail p-value',header=TRUE) > a<-table.element(a,'1-tail p-value',header=TRUE) > a<-table.row.end(a) > for (i in 1:k){ + a<-table.row.start(a) + a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE) + a<-table.element(a,mysum$coefficients[i,1]) + a<-table.element(a, round(mysum$coefficients[i,2],6)) + a<-table.element(a, round(mysum$coefficients[i,3],4)) + a<-table.element(a, round(mysum$coefficients[i,4],6)) + a<-table.element(a, round(mysum$coefficients[i,4]/2,6)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/11wluv1196781537.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Multiple R',1,TRUE) > a<-table.element(a, sqrt(mysum$r.squared)) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'R-squared',1,TRUE) > a<-table.element(a, mysum$r.squared) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Adjusted R-squared',1,TRUE) > a<-table.element(a, mysum$adj.r.squared) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (value)',1,TRUE) > a<-table.element(a, mysum$fstatistic[1]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE) > a<-table.element(a, mysum$fstatistic[2]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE) > a<-table.element(a, mysum$fstatistic[3]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'p-value',1,TRUE) > a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3])) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Residual Standard Deviation',1,TRUE) > a<-table.element(a, mysum$sigma) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Sum Squared Residuals',1,TRUE) > a<-table.element(a, sum(myerror*myerror)) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/126j3s1196781537.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Time or Index', 1, TRUE) > a<-table.element(a, 'Actuals', 1, TRUE) > a<-table.element(a, 'Interpolation
Forecast', 1, TRUE) > a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE) > a<-table.row.end(a) > for (i in 1:n) { + a<-table.row.start(a) + a<-table.element(a,i, 1, TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,x[i]-mysum$resid[i]) + a<-table.element(a,mysum$resid[i]) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/13o5hb1196781537.tab") > > system("convert tmp/1ukqc1196781536.ps tmp/1ukqc1196781536.png") > system("convert tmp/2pv2f1196781536.ps tmp/2pv2f1196781536.png") > system("convert tmp/39y801196781536.ps tmp/39y801196781536.png") > system("convert tmp/4anbf1196781536.ps tmp/4anbf1196781536.png") > system("convert tmp/5nqzq1196781536.ps tmp/5nqzq1196781536.png") > system("convert tmp/6bkbx1196781536.ps tmp/6bkbx1196781536.png") > system("convert tmp/7je9u1196781536.ps tmp/7je9u1196781536.png") > system("convert tmp/8kueg1196781536.ps tmp/8kueg1196781536.png") > system("convert tmp/9hjc91196781536.ps tmp/9hjc91196781536.png") > > > proc.time() user system elapsed 2.366 1.480 2.772