R version 2.6.0 (2007-10-03) Copyright (C) 2007 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. Natural language support but running in an English locale R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- c(87,75,74,91,101,103,106,102,105,105,100,95,96,98,99,92,84,81,72,89,96,91,88,90,98,87,100,100,104,107,105,102,98,106,97,101,100,93,94,96,96,98,102,95,85,84,82,87,77,90,90,94,97,96,93,93,93,97,100,95,97,103,102,93,99,100,97,104,102,103,100,90,90) > par9 = '1' > par8 = '2' > par7 = '1' > par6 = '3' > par5 = '4' > par4 = '0' > par3 = '1' > par2 = '1' > par1 = 'FALSE' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: AUTHOR(S), (YEAR), YOUR SOFTWARE TITLE (vNUMBER) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_YOURPAGE.wasp/ > #Source of accompanying publication: Office for Research, Development, and Education > #Technical description: Write here your technical program description (don't use hard returns!) > library(lattice) > if (par1 == 'TRUE') par1 <- TRUE > if (par1 == 'FALSE') par1 <- FALSE > par2 <- as.numeric(par2) #Box-Cox lambda transformation parameter > par3 <- as.numeric(par3) #degree of non-seasonal differencing > par4 <- as.numeric(par4) #degree of seasonal differencing > par5 <- as.numeric(par5) #seasonal period > par6 <- as.numeric(par6) #degree (p) of the non-seasonal AR(p) polynomial > par7 <- as.numeric(par7) #degree (q) of the non-seasonal MA(q) polynomial > par8 <- as.numeric(par8) #degree (P) of the seasonal AR(P) polynomial > par9 <- as.numeric(par9) #degree (Q) of the seasonal MA(Q) polynomial > armaGR <- function(arima.out, names, n){ + try1 <- arima.out$coef + try2 <- sqrt(diag(arima.out$var.coef)) + try.data.frame <- data.frame(matrix(NA,ncol=4,nrow=length(names))) + dimnames(try.data.frame) <- list(names,c('coef','std','tstat','pv')) + try.data.frame[,1] <- try1 + for(i in 1:length(try2)) try.data.frame[which(rownames(try.data.frame)==names(try2)[i]),2] <- try2[i] + try.data.frame[,3] <- try.data.frame[,1] / try.data.frame[,2] + try.data.frame[,4] <- round((1-pt(abs(try.data.frame[,3]),df=n-(length(try2)+1)))*2,5) + vector <- rep(NA,length(names)) + vector[is.na(try.data.frame[,4])] <- 0 + maxi <- which.max(try.data.frame[,4]) + continue <- max(try.data.frame[,4],na.rm=TRUE) > .05 + vector[maxi] <- 0 + list(summary=try.data.frame,next.vector=vector,continue=continue) + } > arimaSelect <- function(series, order=c(13,0,0), seasonal=list(order=c(2,0,0),period=12), include.mean=F){ + nrc <- order[1]+order[3]+seasonal$order[1]+seasonal$order[3] + coeff <- matrix(NA, nrow=nrc, ncol=nrc) + pval <- matrix(NA, nrow=nrc, ncol=nrc) + mylist <- rep(list(NULL), nrc) + names <- NULL + if(order[1] > 0) names <- paste('ar',1:order[1],sep='') + if(order[3] > 0) names <- c( names , paste('ma',1:order[3],sep='') ) + if(seasonal$order[1] > 0) names <- c(names, paste('sar',1:seasonal$order[1],sep='')) + if(seasonal$order[3] > 0) names <- c(names, paste('sma',1:seasonal$order[3],sep='')) + arima.out <- arima(series, order=order, seasonal=seasonal, include.mean=include.mean, method='ML') + mylist[[1]] <- arima.out + last.arma <- armaGR(arima.out, names, length(series)) + mystop <- FALSE + i <- 1 + coeff[i,] <- last.arma[[1]][,1] + pval [i,] <- last.arma[[1]][,4] + i <- 2 + aic <- arima.out$aic + while(!mystop){ + mylist[[i]] <- arima.out + arima.out <- arima(series, order=order, seasonal=seasonal, include.mean=include.mean, method='ML', fixed=last.arma$next.vector) + aic <- c(aic, arima.out$aic) + last.arma <- armaGR(arima.out, names, length(series)) + mystop <- !last.arma$continue + coeff[i,] <- last.arma[[1]][,1] + pval [i,] <- last.arma[[1]][,4] + i <- i+1 + } + list(coeff, pval, mylist, aic=aic) + } > arimaSelectplot <- function(arimaSelect.out,noms,choix){ + noms <- names(arimaSelect.out[[3]][[1]]$coef) + coeff <- arimaSelect.out[[1]] + k <- min(which(is.na(coeff[,1])))-1 + coeff <- coeff[1:k,] + pval <- arimaSelect.out[[2]][1:k,] + aic <- arimaSelect.out$aic[1:k] + coeff[coeff==0] <- NA + n <- ncol(coeff) + if(missing(choix)) choix <- k + layout(matrix(c(1,1,1,2, + 3,3,3,2, + 3,3,3,4, + 5,6,7,7),nr=4), + widths=c(10,35,45,15), + heights=c(30,30,15,15)) + couleurs <- rainbow(75)[1:50]#(50) + ticks <- pretty(coeff) + par(mar=c(1,1,3,1)) + plot(aic,k:1-.5,type='o',pch=21,bg='blue',cex=2,axes=F,lty=2,xpd=NA) + points(aic[choix],k-choix+.5,pch=21,cex=4,bg=2,xpd=NA) + title('aic',line=2) + par(mar=c(3,0,0,0)) + plot(0,axes=F,xlab='',ylab='',xlim=range(ticks),ylim=c(.1,1)) + rect(xleft = min(ticks) + (0:49)/50*(max(ticks)-min(ticks)), + xright = min(ticks) + (1:50)/50*(max(ticks)-min(ticks)), + ytop = rep(1,50), + ybottom= rep(0,50),col=couleurs,border=NA) + axis(1,ticks) + rect(xleft=min(ticks),xright=max(ticks),ytop=1,ybottom=0) + text(mean(coeff,na.rm=T),.5,'coefficients',cex=2,font=2) + par(mar=c(1,1,3,1)) + image(1:n,1:k,t(coeff[k:1,]),axes=F,col=couleurs,zlim=range(ticks)) + for(i in 1:n) for(j in 1:k) if(!is.na(coeff[j,i])) { + if(pval[j,i]<.01) symb = 'green' + else if( (pval[j,i]<.05) & (pval[j,i]>=.01)) symb = 'orange' + else if( (pval[j,i]<.1) & (pval[j,i]>=.05)) symb = 'red' + else symb = 'black' + polygon(c(i+.5 ,i+.2 ,i+.5 ,i+.5), + c(k-j+0.5,k-j+0.5,k-j+0.8,k-j+0.5), + col=symb) + if(j==choix) { + rect(xleft=i-.5, + xright=i+.5, + ybottom=k-j+1.5, + ytop=k-j+.5, + lwd=4) + text(i, + k-j+1, + round(coeff[j,i],2), + cex=1.2, + font=2) + } + else{ + rect(xleft=i-.5,xright=i+.5,ybottom=k-j+1.5,ytop=k-j+.5) + text(i,k-j+1,round(coeff[j,i],2),cex=1.2,font=1) + } + } + axis(3,1:n,noms) + par(mar=c(0.5,0,0,0.5)) + plot(0,axes=F,xlab='',ylab='',type='n',xlim=c(0,8),ylim=c(-.2,.8)) + cols <- c('green','orange','red','black') + niv <- c('0','0.01','0.05','0.1') + for(i in 0:3){ + polygon(c(1+2*i ,1+2*i ,1+2*i-.5 ,1+2*i), + c(.4 ,.7 , .4 , .4), + col=cols[i+1]) + text(2*i,0.5,niv[i+1],cex=1.5) + } + text(8,.5,1,cex=1.5) + text(4,0,'p-value',cex=2) + box() + residus <- arimaSelect.out[[3]][[choix]]$res + par(mar=c(1,2,4,1)) + acf(residus,main='') + title('acf',line=.5) + par(mar=c(1,2,4,1)) + pacf(residus,main='') + title('pacf',line=.5) + par(mar=c(2,2,4,1)) + qqnorm(residus,main='') + title('qq-norm',line=.5) + residus + } > if (par2 == 0) x <- log(x) > if (par2 != 0) x <- x^par2 > (selection <- arimaSelect(x, order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5))) [[1]] [,1] [,2] [,3] [,4] [,5] [,6] [1,] 0.7736401 -0.09105228 -0.03848091 -0.9999598 0.2103627 -0.2469827 [2,] 0.7775099 -0.11384910 0.00000000 -1.0000012 0.2029542 -0.2446342 [3,] 0.7940361 -0.11646951 0.00000000 -0.9999969 0.0000000 -0.2470532 [4,] 0.7989715 -0.13530752 0.00000000 -1.0000004 0.0000000 -0.2501875 [5,] 0.7121531 0.00000000 0.00000000 -0.9999924 0.0000000 -0.2138747 [6,] 0.7158433 0.00000000 0.00000000 -1.0000002 0.0000000 0.0000000 [7,] NA NA NA NA NA NA [,7] [1,] -0.24489937 [2,] -0.25495471 [3,] -0.06733045 [4,] 0.00000000 [5,] 0.00000000 [6,] 0.00000000 [7,] NA [[2]] [,1] [,2] [,3] [,4] [,5] [,6] [,7] [1,] 0 0.55989 0.78936 0 0.55341 0.06520 0.49415 [2,] 0 0.38568 NA 0 0.56073 0.06889 0.46893 [3,] 0 0.37756 NA 0 NA 0.05479 0.61712 [4,] 0 0.28906 NA 0 NA 0.05242 NA [5,] 0 NA NA 0 NA 0.09440 NA [6,] 0 NA NA 0 NA NA NA [7,] NA NA NA NA NA NA NA [[3]] [[3]][[1]] Call: arima(x = series, order = order, seasonal = seasonal, include.mean = include.mean, method = "ML") Coefficients: ar1 ar2 ar3 ma1 sar1 sar2 sma1 0.7736 -0.0911 -0.0385 -1.0000 0.2104 -0.2470 -0.2449 s.e. 0.1235 0.1554 0.1435 0.0442 0.3531 0.1317 0.3562 sigma^2 estimated as 29.65: log likelihood = -226.22, aic = 468.44 [[3]][[2]] Call: arima(x = series, order = order, seasonal = seasonal, include.mean = include.mean, method = "ML") Coefficients: ar1 ar2 ar3 ma1 sar1 sar2 sma1 0.7736 -0.0911 -0.0385 -1.0000 0.2104 -0.2470 -0.2449 s.e. 0.1235 0.1554 0.1435 0.0442 0.3531 0.1317 0.3562 sigma^2 estimated as 29.65: log likelihood = -226.22, aic = 468.44 [[3]][[3]] Call: arima(x = series, order = order, seasonal = seasonal, include.mean = include.mean, fixed = last.arma$next.vector, method = "ML") Coefficients: ar1 ar2 ar3 ma1 sar1 sar2 sma1 0.7775 -0.1138 0 -1.0000 0.2030 -0.2446 -0.255 s.e. 0.1231 0.1304 0 0.0439 0.3471 0.1323 0.350 sigma^2 estimated as 29.71: log likelihood = -226.26, aic = 466.51 [[3]][[4]] Call: arima(x = series, order = order, seasonal = seasonal, include.mean = include.mean, fixed = last.arma$next.vector, method = "ML") Coefficients: ar1 ar2 ar3 ma1 sar1 sar2 sma1 0.7940 -0.1165 0 -1.0000 0 -0.2471 -0.0673 s.e. 0.1193 0.1311 0 0.0425 0 0.1264 0.1340 sigma^2 estimated as 29.92: log likelihood = -226.43, aic = 464.87 [[3]][[5]] Call: arima(x = series, order = order, seasonal = seasonal, include.mean = include.mean, fixed = last.arma$next.vector, method = "ML") Coefficients: ar1 ar2 ar3 ma1 sar1 sar2 sma1 0.7990 -0.1353 0 -1.0000 0 -0.2502 0 s.e. 0.1188 0.1266 0 0.0424 0 0.1267 0 sigma^2 estimated as 30.05: log likelihood = -226.56, aic = 463.12 [[3]][[6]] Call: arima(x = series, order = order, seasonal = seasonal, include.mean = include.mean, fixed = last.arma$next.vector, method = "ML") Coefficients: ar1 ar2 ar3 ma1 sar1 sar2 sma1 0.7122 0 0 -1.0000 0 -0.2139 0 s.e. 0.0876 0 0 0.0404 0 0.1261 0 sigma^2 estimated as 30.74: log likelihood = -227.12, aic = 462.24 [[3]][[7]] NULL $aic [1] 468.4421 466.5140 464.8669 463.1191 462.2390 463.0081 Warning messages: 1: In log(s2) : NaNs produced 2: In log(s2) : NaNs produced 3: In arima(series, order = order, seasonal = seasonal, include.mean = include.mean, : some AR parameters were fixed: setting transform.pars = FALSE 4: In arima(series, order = order, seasonal = seasonal, include.mean = include.mean, : some AR parameters were fixed: setting transform.pars = FALSE 5: In arima(series, order = order, seasonal = seasonal, include.mean = include.mean, : some AR parameters were fixed: setting transform.pars = FALSE 6: In arima(series, order = order, seasonal = seasonal, include.mean = include.mean, : some AR parameters were fixed: setting transform.pars = FALSE 7: In arima(series, order = order, seasonal = seasonal, include.mean = include.mean, : some AR parameters were fixed: setting transform.pars = FALSE > postscript(file="/var/www/html/rcomp/tmp/1xrjx1196783158.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > resid <- arimaSelectplot(selection) > dev.off() null device 1 > resid Time Series: Start = 1 End = 73 Frequency = 1 [1] 0.08699995 -10.81559327 -2.40776360 14.15831819 10.58083543 [6] 4.67006448 5.58297633 -0.77727980 4.57202035 -0.11809026 [11] -3.36336367 -0.85193406 3.17844344 3.16127998 2.88627801 [16] -6.04977137 -7.44211798 -4.87878592 -12.38508568 10.76148142 [21] 6.24479119 -3.52595312 -2.92215858 -0.36911796 5.46531269 [26] -10.56384474 8.83576326 4.35727780 7.07573024 4.89891200 [31] 0.79327975 0.08887164 -0.36430936 6.82202193 -3.46686736 [36] 4.94337057 1.86074782 -4.36327258 0.78215764 1.70286292 [41] -0.13870922 4.13549946 3.48147603 -4.13409943 -9.82123164 [46] -4.88815275 -4.79533479 1.93390623 -11.83347411 8.74705254 [51] -0.04397988 1.83290528 0.88656154 -0.94025245 -3.46440855 [56] 0.07585423 -2.80112502 5.48003445 3.57599200 -2.71226783 [61] 2.87973027 6.70880342 0.88714767 -6.89787760 5.52230352 [66] 3.04102113 -0.65636901 6.90878522 1.05606104 4.42058936 [71] -0.44698853 -10.01183863 -0.16733477 > postscript(file="/var/www/html/rcomp/tmp/2qsx51196783158.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > acf(resid,length(resid)/2, main='Residual Autocorrelation Function') > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/3k3md1196783158.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > pacf(resid,length(resid)/2, main='Residual Partial Autocorrelation Function') > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/4dmoj1196783158.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > cpgram(resid, main='Residual Cumulative Periodogram') > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/5shsb1196783158.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > hist(resid, main='Residual Histogram', xlab='values of Residuals') > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/6qycu1196783158.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > densityplot(~resid,col='black',main='Residual Density Plot', xlab='values of Residuals') > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/7fyie1196783158.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > qqnorm(resid, main='Residual Normal Q-Q Plot') > dev.off() null device 1 > ncols <- length(selection[[1]][1,]) > nrows <- length(selection[[2]][,1])-1 > load(file='/var/www/html/rcomp/createtable') > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'ARIMA Parameter Estimation and Backward Selection', ncols+1,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Iteration', header=TRUE) > for (i in 1:ncols) { + a<-table.element(a,names(selection[[3]][[1]]$coef)[i],header=TRUE) + } > a<-table.row.end(a) > for (j in 1:nrows) { + a<-table.row.start(a) + mydum <- 'Estimates (' + mydum <- paste(mydum,j) + mydum <- paste(mydum,')') + a<-table.element(a,mydum, header=TRUE) + for (i in 1:ncols) { + a<-table.element(a,round(selection[[1]][j,i],4)) + } + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'(p-val)', header=TRUE) + for (i in 1:ncols) { + mydum <- '(' + mydum <- paste(mydum,round(selection[[2]][j,i],4),sep='') + mydum <- paste(mydum,')') + a<-table.element(a,mydum) + } + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/82mb71196783158.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Estimated ARIMA Residuals', 1,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Value', 1,TRUE) > a<-table.row.end(a) > for (i in (par4*par5+par3):length(resid)) { + a<-table.row.start(a) + a<-table.element(a,resid[i]) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/995471196783158.tab") > > system("convert tmp/1xrjx1196783158.ps tmp/1xrjx1196783158.png") > system("convert tmp/2qsx51196783158.ps tmp/2qsx51196783158.png") > system("convert tmp/3k3md1196783158.ps tmp/3k3md1196783158.png") > system("convert tmp/4dmoj1196783158.ps tmp/4dmoj1196783158.png") > system("convert tmp/5shsb1196783158.ps tmp/5shsb1196783158.png") > system("convert tmp/6qycu1196783158.ps tmp/6qycu1196783158.png") > system("convert tmp/7fyie1196783158.ps tmp/7fyie1196783158.png") > > > proc.time() user system elapsed 4.996 1.832 5.338