R version 2.6.0 (2007-10-03) Copyright (C) 2007 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- c(93.5,94.7,112.9,99.2,105.6,113.0,83.1,81.1,96.9,104.3,97.7,102.6,89.9,96.0,112.7,107.1,106.2,121.0,101.2,83.2,105.1,113.3,99.1,100.3,93.5,98.8,106.2,98.3,102.1,117.1,101.5,80.5,105.9,109.5,97.2,114.5,93.5,100.9,121.1,116.5,109.3,118.1,108.3,105.4,116.2,111.2,105.8,122.7,99.5,107.9,124.6,115.0,110.3,132.7,99.7,96.5,118.7,112.9,130.5,137.9,115.0,116.8,140.9,120.7,134.2,147.3,112.4,107.1,128.4,137.7,135.0,151.0,137.4,132.4,161.3,139.8,146.0,154.6,142.1,120.5) > par9 = '0' > par8 = '2' > par7 = '1' > par6 = '3' > par5 = '12' > par4 = '1' > par3 = '1' > par2 = '1' > par1 = 'FALSE' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: AUTHOR(S), (YEAR), YOUR SOFTWARE TITLE (vNUMBER) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_YOURPAGE.wasp/ > #Source of accompanying publication: Office for Research, Development, and Education > #Technical description: Write here your technical program description (don't use hard returns!) > library(lattice) > if (par1 == 'TRUE') par1 <- TRUE > if (par1 == 'FALSE') par1 <- FALSE > par2 <- as.numeric(par2) #Box-Cox lambda transformation parameter > par3 <- as.numeric(par3) #degree of non-seasonal differencing > par4 <- as.numeric(par4) #degree of seasonal differencing > par5 <- as.numeric(par5) #seasonal period > par6 <- as.numeric(par6) #degree (p) of the non-seasonal AR(p) polynomial > par7 <- as.numeric(par7) #degree (q) of the non-seasonal MA(q) polynomial > par8 <- as.numeric(par8) #degree (P) of the seasonal AR(P) polynomial > par9 <- as.numeric(par9) #degree (Q) of the seasonal MA(Q) polynomial > armaGR <- function(arima.out, names, n){ + try1 <- arima.out$coef + try2 <- sqrt(diag(arima.out$var.coef)) + try.data.frame <- data.frame(matrix(NA,ncol=4,nrow=length(names))) + dimnames(try.data.frame) <- list(names,c('coef','std','tstat','pv')) + try.data.frame[,1] <- try1 + for(i in 1:length(try2)) try.data.frame[which(rownames(try.data.frame)==names(try2)[i]),2] <- try2[i] + try.data.frame[,3] <- try.data.frame[,1] / try.data.frame[,2] + try.data.frame[,4] <- round((1-pt(abs(try.data.frame[,3]),df=n-(length(try2)+1)))*2,5) + vector <- rep(NA,length(names)) + vector[is.na(try.data.frame[,4])] <- 0 + maxi <- which.max(try.data.frame[,4]) + continue <- max(try.data.frame[,4],na.rm=TRUE) > .05 + vector[maxi] <- 0 + list(summary=try.data.frame,next.vector=vector,continue=continue) + } > arimaSelect <- function(series, order=c(13,0,0), seasonal=list(order=c(2,0,0),period=12), include.mean=F){ + nrc <- order[1]+order[3]+seasonal$order[1]+seasonal$order[3] + coeff <- matrix(NA, nrow=nrc, ncol=nrc) + pval <- matrix(NA, nrow=nrc, ncol=nrc) + mylist <- rep(list(NULL), nrc) + names <- NULL + if(order[1] > 0) names <- paste('ar',1:order[1],sep='') + if(order[3] > 0) names <- c( names , paste('ma',1:order[3],sep='') ) + if(seasonal$order[1] > 0) names <- c(names, paste('sar',1:seasonal$order[1],sep='')) + if(seasonal$order[3] > 0) names <- c(names, paste('sma',1:seasonal$order[3],sep='')) + arima.out <- arima(series, order=order, seasonal=seasonal, include.mean=include.mean, method='ML') + mylist[[1]] <- arima.out + last.arma <- armaGR(arima.out, names, length(series)) + mystop <- FALSE + i <- 1 + coeff[i,] <- last.arma[[1]][,1] + pval [i,] <- last.arma[[1]][,4] + i <- 2 + aic <- arima.out$aic + while(!mystop){ + mylist[[i]] <- arima.out + arima.out <- arima(series, order=order, seasonal=seasonal, include.mean=include.mean, method='ML', fixed=last.arma$next.vector) + aic <- c(aic, arima.out$aic) + last.arma <- armaGR(arima.out, names, length(series)) + mystop <- !last.arma$continue + coeff[i,] <- last.arma[[1]][,1] + pval [i,] <- last.arma[[1]][,4] + i <- i+1 + } + list(coeff, pval, mylist, aic=aic) + } > arimaSelectplot <- function(arimaSelect.out,noms,choix){ + noms <- names(arimaSelect.out[[3]][[1]]$coef) + coeff <- arimaSelect.out[[1]] + k <- min(which(is.na(coeff[,1])))-1 + coeff <- coeff[1:k,] + pval <- arimaSelect.out[[2]][1:k,] + aic <- arimaSelect.out$aic[1:k] + coeff[coeff==0] <- NA + n <- ncol(coeff) + if(missing(choix)) choix <- k + layout(matrix(c(1,1,1,2, + 3,3,3,2, + 3,3,3,4, + 5,6,7,7),nr=4), + widths=c(10,35,45,15), + heights=c(30,30,15,15)) + couleurs <- rainbow(75)[1:50]#(50) + ticks <- pretty(coeff) + par(mar=c(1,1,3,1)) + plot(aic,k:1-.5,type='o',pch=21,bg='blue',cex=2,axes=F,lty=2,xpd=NA) + points(aic[choix],k-choix+.5,pch=21,cex=4,bg=2,xpd=NA) + title('aic',line=2) + par(mar=c(3,0,0,0)) + plot(0,axes=F,xlab='',ylab='',xlim=range(ticks),ylim=c(.1,1)) + rect(xleft = min(ticks) + (0:49)/50*(max(ticks)-min(ticks)), + xright = min(ticks) + (1:50)/50*(max(ticks)-min(ticks)), + ytop = rep(1,50), + ybottom= rep(0,50),col=couleurs,border=NA) + axis(1,ticks) + rect(xleft=min(ticks),xright=max(ticks),ytop=1,ybottom=0) + text(mean(coeff,na.rm=T),.5,'coefficients',cex=2,font=2) + par(mar=c(1,1,3,1)) + image(1:n,1:k,t(coeff[k:1,]),axes=F,col=couleurs,zlim=range(ticks)) + for(i in 1:n) for(j in 1:k) if(!is.na(coeff[j,i])) { + if(pval[j,i]<.01) symb = 'green' + else if( (pval[j,i]<.05) & (pval[j,i]>=.01)) symb = 'orange' + else if( (pval[j,i]<.1) & (pval[j,i]>=.05)) symb = 'red' + else symb = 'black' + polygon(c(i+.5 ,i+.2 ,i+.5 ,i+.5), + c(k-j+0.5,k-j+0.5,k-j+0.8,k-j+0.5), + col=symb) + if(j==choix) { + rect(xleft=i-.5, + xright=i+.5, + ybottom=k-j+1.5, + ytop=k-j+.5, + lwd=4) + text(i, + k-j+1, + round(coeff[j,i],2), + cex=1.2, + font=2) + } + else{ + rect(xleft=i-.5,xright=i+.5,ybottom=k-j+1.5,ytop=k-j+.5) + text(i,k-j+1,round(coeff[j,i],2),cex=1.2,font=1) + } + } + axis(3,1:n,noms) + par(mar=c(0.5,0,0,0.5)) + plot(0,axes=F,xlab='',ylab='',type='n',xlim=c(0,8),ylim=c(-.2,.8)) + cols <- c('green','orange','red','black') + niv <- c('0','0.01','0.05','0.1') + for(i in 0:3){ + polygon(c(1+2*i ,1+2*i ,1+2*i-.5 ,1+2*i), + c(.4 ,.7 , .4 , .4), + col=cols[i+1]) + text(2*i,0.5,niv[i+1],cex=1.5) + } + text(8,.5,1,cex=1.5) + text(4,0,'p-value',cex=2) + box() + residus <- arimaSelect.out[[3]][[choix]]$res + par(mar=c(1,2,4,1)) + acf(residus,main='') + title('acf',line=.5) + par(mar=c(1,2,4,1)) + pacf(residus,main='') + title('pacf',line=.5) + par(mar=c(2,2,4,1)) + qqnorm(residus,main='') + title('qq-norm',line=.5) + residus + } > if (par2 == 0) x <- log(x) > if (par2 != 0) x <- x^par2 > (selection <- arimaSelect(x, order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5))) [[1]] [,1] [,2] [,3] [,4] [,5] [,6] [1,] -0.2546794 -0.2479728 -0.05027574 -0.4238577 -0.3556528 -0.2782216 [2,] -0.1673128 -0.1928809 0.00000000 -0.5103630 -0.3589570 -0.2770140 [3,] 0.0000000 -0.1018809 0.00000000 -0.6526546 -0.3654640 -0.2740087 [4,] 0.0000000 0.0000000 0.00000000 -0.6989722 -0.3795557 -0.2709480 [5,] 0.0000000 0.0000000 0.00000000 -1.3217495 -0.3073034 0.0000000 [6,] NA NA NA NA NA NA [[2]] [,1] [,2] [,3] [,4] [,5] [,6] [1,] 0.59934 0.43533 0.83956 0.38007 0.00970 0.06505 [2,] 0.49751 0.29630 NA 0.04208 0.00875 0.06647 [3,] NA 0.49379 NA 0.00000 0.00805 0.06904 [4,] NA NA NA 0.00000 0.00494 0.06520 [5,] NA NA NA 0.00000 0.01476 NA [6,] NA NA NA NA NA NA [[3]] [[3]][[1]] Call: arima(x = series, order = order, seasonal = seasonal, include.mean = include.mean, method = "ML") Coefficients: ar1 ar2 ar3 ma1 sar1 sar2 -0.2547 -0.2480 -0.0503 -0.4239 -0.3557 -0.2782 s.e. 0.4827 0.3161 0.2474 0.4799 0.1339 0.1485 sigma^2 estimated as 51.28: log likelihood = -228.74, aic = 471.48 [[3]][[2]] Call: arima(x = series, order = order, seasonal = seasonal, include.mean = include.mean, method = "ML") Coefficients: ar1 ar2 ar3 ma1 sar1 sar2 -0.2547 -0.2480 -0.0503 -0.4239 -0.3557 -0.2782 s.e. 0.4827 0.3161 0.2474 0.4799 0.1339 0.1485 sigma^2 estimated as 51.28: log likelihood = -228.74, aic = 471.48 [[3]][[3]] Call: arima(x = series, order = order, seasonal = seasonal, include.mean = include.mean, fixed = last.arma$next.vector, method = "ML") Coefficients: ar1 ar2 ar3 ma1 sar1 sar2 -0.1673 -0.1929 0 -0.5104 -0.3590 -0.2770 s.e. 0.2454 0.1834 0 0.2467 0.1333 0.1487 sigma^2 estimated as 51.3: log likelihood = -228.76, aic = 469.52 [[3]][[4]] Call: arima(x = series, order = order, seasonal = seasonal, include.mean = include.mean, fixed = last.arma$next.vector, method = "ML") Coefficients: ar1 ar2 ar3 ma1 sar1 sar2 0 -0.1019 0 -0.6527 -0.3655 -0.2740 s.e. 0 0.1482 0 0.1225 0.1342 0.1485 sigma^2 estimated as 51.61: log likelihood = -228.97, aic = 467.94 [[3]][[5]] Call: arima(x = series, order = order, seasonal = seasonal, include.mean = include.mean, fixed = last.arma$next.vector, method = "ML") Coefficients: ar1 ar2 ar3 ma1 sar1 sar2 0 0 0 -0.6990 -0.3796 -0.2709 s.e. 0 0 0 0.1016 0.1311 0.1448 sigma^2 estimated as 51.91: log likelihood = -229.2, aic = 466.39 [[3]][[6]] NULL $aic [1] 471.4846 469.5193 467.9399 466.3909 467.5445 Warning messages: 1: In arima(series, order = order, seasonal = seasonal, include.mean = include.mean, : some AR parameters were fixed: setting transform.pars = FALSE 2: In arima(series, order = order, seasonal = seasonal, include.mean = include.mean, : some AR parameters were fixed: setting transform.pars = FALSE 3: In arima(series, order = order, seasonal = seasonal, include.mean = include.mean, : some AR parameters were fixed: setting transform.pars = FALSE 4: In arima(series, order = order, seasonal = seasonal, include.mean = include.mean, : some AR parameters were fixed: setting transform.pars = FALSE > postscript(file="/var/www/html/rcomp/tmp/1kndk1196784904.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > resid <- arimaSelectplot(selection) > dev.off() null device 1 > resid Time Series: Start = 1 End = 80 Frequency = 1 [1] 0.053982234 0.025071107 0.031794692 0.011616103 0.015055458 [6] 0.019333903 -0.011278809 -0.011741702 0.004512523 0.011098875 [11] 0.003781174 -0.046196311 -0.361846008 3.688630989 0.682519663 [16] 7.630677317 -1.520750372 5.709555811 13.193992886 -5.499403235 [21] 1.765004446 1.966771424 -5.606629228 -7.316460132 -1.085635488 [26] -0.099103421 -9.395143137 -6.394477758 -2.028054732 0.903602089 [31] 7.574914695 -2.194073114 3.588988337 -1.689512745 -1.536711577 [36] 13.359888638 -3.657266579 0.613493187 9.245069082 11.028573888 [41] -3.498937483 -6.558501638 5.547507441 16.500580864 -0.086799987 [46] -10.189552674 -1.560021462 3.617917744 -3.462280269 -0.839719034 [51] -1.748440636 -5.592754533 -4.310835097 8.287789898 -14.067660279 [56] -4.075788814 3.957941212 -2.544048762 24.355516049 11.734269302 [61] 3.819444847 -2.981767666 7.455516057 -6.392451584 11.700315563 [66] 2.360276115 -7.484426962 -2.541115306 -2.305074093 10.855020188 [71] -2.113319896 3.408689587 11.200360587 -1.205378679 5.817868207 [76] -2.611502028 -1.540083494 -5.421451515 11.603407405 -9.067891771 > postscript(file="/var/www/html/rcomp/tmp/21nq21196784904.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > acf(resid,length(resid)/2, main='Residual Autocorrelation Function') > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/3v6d51196784904.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > pacf(resid,length(resid)/2, main='Residual Partial Autocorrelation Function') > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/4482d1196784904.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > cpgram(resid, main='Residual Cumulative Periodogram') > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/5dbyw1196784904.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > hist(resid, main='Residual Histogram', xlab='values of Residuals') > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/6wc661196784904.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > densityplot(~resid,col='black',main='Residual Density Plot', xlab='values of Residuals') > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/7ta0x1196784904.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > qqnorm(resid, main='Residual Normal Q-Q Plot') > dev.off() null device 1 > ncols <- length(selection[[1]][1,]) > nrows <- length(selection[[2]][,1])-1 > load(file='/var/www/html/rcomp/createtable') > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'ARIMA Parameter Estimation and Backward Selection', ncols+1,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Iteration', header=TRUE) > for (i in 1:ncols) { + a<-table.element(a,names(selection[[3]][[1]]$coef)[i],header=TRUE) + } > a<-table.row.end(a) > for (j in 1:nrows) { + a<-table.row.start(a) + mydum <- 'Estimates (' + mydum <- paste(mydum,j) + mydum <- paste(mydum,')') + a<-table.element(a,mydum, header=TRUE) + for (i in 1:ncols) { + a<-table.element(a,round(selection[[1]][j,i],4)) + } + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'(p-val)', header=TRUE) + for (i in 1:ncols) { + mydum <- '(' + mydum <- paste(mydum,round(selection[[2]][j,i],4),sep='') + mydum <- paste(mydum,')') + a<-table.element(a,mydum) + } + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/8hnfd1196784904.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Estimated ARIMA Residuals', 1,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Value', 1,TRUE) > a<-table.row.end(a) > for (i in (par4*par5+par3):length(resid)) { + a<-table.row.start(a) + a<-table.element(a,resid[i]) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/9232y1196784904.tab") > > system("convert tmp/1kndk1196784904.ps tmp/1kndk1196784904.png") > system("convert tmp/21nq21196784904.ps tmp/21nq21196784904.png") > system("convert tmp/3v6d51196784904.ps tmp/3v6d51196784904.png") > system("convert tmp/4482d1196784904.ps tmp/4482d1196784904.png") > system("convert tmp/5dbyw1196784904.ps tmp/5dbyw1196784904.png") > system("convert tmp/6wc661196784904.ps tmp/6wc661196784904.png") > system("convert tmp/7ta0x1196784904.ps tmp/7ta0x1196784904.png") > > > proc.time() user system elapsed 5.195 1.074 5.549