R version 2.6.1 (2007-11-26) Copyright (C) 2007 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. Natural language support but running in an English locale R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- c(97.3,101,113.2,101,105.7,113.9,86.4,96.5,103.3,114.9,105.8,94.2,98.4,99.4,108.8,112.6,104.4,112.2,81.1,97.1,112.6,113.8,107.8,103.2,103.3,101.2,107.7,110.4,101.9,115.9,89.9,88.6,117.2,123.9,100,103.6,94.1,98.7,119.5,112.7,104.4,124.7,89.1,97,121.6,118.8,114,111.5,97.2,102.5,113.4,109.8,104.9,126.1,80,96.8,117.2,112.3,117.3,111.1,102.2,104.3,122.9,107.6,121.3,131.5,89,104.4,128.9,135.9,133.3,121.3,120.5,120.4,137.9,126.1,133.2,146.6,103.4,117.2) > par10 = 'FALSE' > par9 = '0' > par8 = '2' > par7 = '0' > par6 = '3' > par5 = '12' > par4 = '1' > par3 = '0' > par2 = '1' > par1 = '12' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: AUTHOR(S), (YEAR), YOUR SOFTWARE TITLE (vNUMBER) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_YOURPAGE.wasp/ > #Source of accompanying publication: Office for Research, Development, and Education > #Technical description: Write here your technical program description (don't use hard returns!) > par1 <- as.numeric(par1) #cut off periods > par2 <- as.numeric(par2) #lambda > par3 <- as.numeric(par3) #degree of non-seasonal differencing > par4 <- as.numeric(par4) #degree of seasonal differencing > par5 <- as.numeric(par5) #seasonal period > par6 <- as.numeric(par6) #p > par7 <- as.numeric(par7) #q > par8 <- as.numeric(par8) #P > par9 <- as.numeric(par9) #Q > if (par10 == 'TRUE') par10 <- TRUE > if (par10 == 'FALSE') par10 <- FALSE > if (par2 == 0) x <- log(x) > if (par2 != 0) x <- x^par2 > lx <- length(x) > first <- lx - 2*par1 > nx <- lx - par1 > nx1 <- nx + 1 > fx <- lx - nx > if (fx < 1) { + fx <- par5 + nx1 <- lx + fx - 1 + first <- lx - 2*fx + } > first <- 1 > if (fx < 3) fx <- round(lx/10,0) > (arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML')) Call: arima(x = x[1:nx], order = c(par6, par3, par7), seasonal = list(order = c(par8, par4, par9), period = par5), include.mean = par10, method = "ML") Coefficients: ar1 ar2 ar3 sar1 sar2 -0.0113 0.1667 0.5067 -0.6161 -0.2723 s.e. 0.1176 0.1162 0.1429 0.1927 0.1965 sigma^2 estimated as 27.40: log likelihood = -175.05, aic = 362.11 > (forecast <- predict(arima.out,fx)) $pred Time Series: Start = 69 End = 80 Frequency = 1 [1] 123.5193 120.8758 117.1674 112.0969 100.8073 105.5057 120.5618 111.5654 [9] 113.0449 129.0123 87.1719 100.9674 $se Time Series: Start = 69 End = 80 Frequency = 1 [1] 5.234889 5.235222 5.307573 5.924626 5.925250 5.990304 6.137976 6.140478 [9] 6.176620 6.216132 6.219101 6.235544 > (lb <- forecast$pred - 1.96 * forecast$se) Time Series: Start = 69 End = 80 Frequency = 1 [1] 113.25889 110.61473 106.76460 100.48460 89.19380 93.76473 108.53136 [8] 99.53004 100.93868 116.82867 74.98245 88.74570 > (ub <- forecast$pred + 1.96 * forecast$se) Time Series: Start = 69 End = 80 Frequency = 1 [1] 133.77965 131.13680 127.57029 123.70913 112.42078 117.24672 132.59223 [8] 123.60071 125.15103 141.19591 99.36133 113.18903 > if (par2 == 0) { + x <- exp(x) + forecast$pred <- exp(forecast$pred) + lb <- exp(lb) + ub <- exp(ub) + } > if (par2 != 0) { + x <- x^(1/par2) + forecast$pred <- forecast$pred^(1/par2) + lb <- lb^(1/par2) + ub <- ub^(1/par2) + } > (actandfor <- c(x[1:nx], forecast$pred)) [1] 97.3000 101.0000 113.2000 101.0000 105.7000 113.9000 86.4000 96.5000 [9] 103.3000 114.9000 105.8000 94.2000 98.4000 99.4000 108.8000 112.6000 [17] 104.4000 112.2000 81.1000 97.1000 112.6000 113.8000 107.8000 103.2000 [25] 103.3000 101.2000 107.7000 110.4000 101.9000 115.9000 89.9000 88.6000 [33] 117.2000 123.9000 100.0000 103.6000 94.1000 98.7000 119.5000 112.7000 [41] 104.4000 124.7000 89.1000 97.0000 121.6000 118.8000 114.0000 111.5000 [49] 97.2000 102.5000 113.4000 109.8000 104.9000 126.1000 80.0000 96.8000 [57] 117.2000 112.3000 117.3000 111.1000 102.2000 104.3000 122.9000 107.6000 [65] 121.3000 131.5000 89.0000 104.4000 123.5193 120.8758 117.1674 112.0969 [73] 100.8073 105.5057 120.5618 111.5654 113.0449 129.0123 87.1719 100.9674 > (perc.se <- (ub-forecast$pred)/1.96/forecast$pred) Time Series: Start = 69 End = 80 Frequency = 1 [1] 0.04238116 0.04331077 0.04529904 0.05285274 0.05877799 0.05677705 [7] 0.05091145 0.05503928 0.05463867 0.04818248 0.07134296 0.06175801 > postscript(file="/var/www/html/rcomp/tmp/12g2f1197038203.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mar=c(4,4,2,2),las=1) > ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub)) > plot(x,ylim=ylim,type='n',xlim=c(first,lx)) > usr <- par('usr') > rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon') > rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender') > abline(h= (-3:3)*2 , col ='gray', lty =3) > polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA) > lines(nx1:lx, lb , lty=2) > lines(nx1:lx, ub , lty=2) > lines(x, lwd=2) > lines(nx1:lx, forecast$pred , lwd=2 , col ='white') > box() > par(opar) > dev.off() null device 1 > prob.dec <- array(NA, dim=fx) > prob.sdec <- array(NA, dim=fx) > prob.ldec <- array(NA, dim=fx) > prob.pval <- array(NA, dim=fx) > perf.pe <- array(0, dim=fx) > perf.mape <- array(0, dim=fx) > perf.se <- array(0, dim=fx) > perf.mse <- array(0, dim=fx) > perf.rmse <- array(0, dim=fx) > for (i in 1:fx) { + locSD <- (ub[i] - forecast$pred[i]) / 1.96 + perf.pe[i] = (x[nx+i] - forecast$pred[i]) / forecast$pred[i] + perf.mape[i] = perf.mape[i] + abs(perf.pe[i]) + perf.se[i] = (x[nx+i] - forecast$pred[i])^2 + perf.mse[i] = perf.mse[i] + perf.se[i] + prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD) + prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD) + prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD) + prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD) + } > perf.mape = perf.mape / fx > perf.mse = perf.mse / fx > perf.rmse = sqrt(perf.mse) > postscript(file="/var/www/html/rcomp/tmp/26dc81197038203.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub))) > dum <- forecast$pred > dum[1:12] <- x[(nx+1):lx] > lines(dum, lty=1) > lines(ub,lty=3) > lines(lb,lty=3) > dev.off() null device 1 > load(file='/var/www/html/rcomp/createtable') > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'Y[t]',1,header=TRUE) > a<-table.element(a,'F[t]',1,header=TRUE) > a<-table.element(a,'95% LB',1,header=TRUE) > a<-table.element(a,'95% UB',1,header=TRUE) > a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE) > mylab <- paste('P(F[t]>Y[',nx,sep='') > mylab <- paste(mylab,'])',sep='') > a<-table.element(a,mylab,1,header=TRUE) > a<-table.row.end(a) > for (i in (nx-par5):nx) { + a<-table.row.start(a) + a<-table.element(a,i,header=TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.row.end(a) + } > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(x[nx+i],4)) + a<-table.element(a,round(forecast$pred[i],4)) + a<-table.element(a,round(lb[i],4)) + a<-table.element(a,round(ub[i],4)) + a<-table.element(a,round((1-prob.pval[i]),4)) + a<-table.element(a,round((1-prob.dec[i]),4)) + a<-table.element(a,round((1-prob.sdec[i]),4)) + a<-table.element(a,round((1-prob.ldec[i]),4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/304b71197038204.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',7,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'% S.E.',1,header=TRUE) > a<-table.element(a,'PE',1,header=TRUE) > a<-table.element(a,'MAPE',1,header=TRUE) > a<-table.element(a,'Sq.E',1,header=TRUE) > a<-table.element(a,'MSE',1,header=TRUE) > a<-table.element(a,'RMSE',1,header=TRUE) > a<-table.row.end(a) > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(perc.se[i],4)) + a<-table.element(a,round(perf.pe[i],4)) + a<-table.element(a,round(perf.mape[i],4)) + a<-table.element(a,round(perf.se[i],4)) + a<-table.element(a,round(perf.mse[i],4)) + a<-table.element(a,round(perf.rmse[i],4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/4xgi11197038204.tab") > > system("convert tmp/12g2f1197038203.ps tmp/12g2f1197038203.png") > system("convert tmp/26dc81197038203.ps tmp/26dc81197038203.png") > > > proc.time() user system elapsed 2.863 0.674 3.071