R version 2.6.0 (2007-10-03) Copyright (C) 2007 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- c(108.4,117,103.8,100.8,110.6,104,112.6,107.3,98.9,109.8,104.9,102.2,123.9,124.9,112.7,121.9,100.6,104.3,120.4,107.5,102.9,125.6,107.5,108.8,128.4,121.1,119.5,128.7,108.7,105.5,119.8,111.3,110.6,120.1,97.5,107.7,127.3,117.2,119.8,116.2,111,112.4,130.6,109.1,118.8,123.9,101.6,112.8,128,129.6,125.8,119.5,115.7,113.6,129.7,112,116.8,126.3,112.9,115.9) > par10 = 'FALSE' > par9 = '0' > par8 = '2' > par7 = '1' > par6 = '3' > par5 = '1' > par4 = '1' > par3 = '0' > par2 = '-2.0' > par1 = '12' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: AUTHOR(S), (YEAR), YOUR SOFTWARE TITLE (vNUMBER) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_YOURPAGE.wasp/ > #Source of accompanying publication: Office for Research, Development, and Education > #Technical description: Write here your technical program description (don't use hard returns!) > par1 <- as.numeric(par1) #cut off periods > par2 <- as.numeric(par2) #lambda > par3 <- as.numeric(par3) #degree of non-seasonal differencing > par4 <- as.numeric(par4) #degree of seasonal differencing > par5 <- as.numeric(par5) #seasonal period > par6 <- as.numeric(par6) #p > par7 <- as.numeric(par7) #q > par8 <- as.numeric(par8) #P > par9 <- as.numeric(par9) #Q > if (par10 == 'TRUE') par10 <- TRUE > if (par10 == 'FALSE') par10 <- FALSE > if (par2 == 0) x <- log(x) > if (par2 != 0) x <- x^par2 > lx <- length(x) > first <- lx - 2*par1 > nx <- lx - par1 > nx1 <- nx + 1 > fx <- lx - nx > if (fx < 1) { + fx <- par5 + nx1 <- lx + fx - 1 + first <- lx - 2*fx + } > first <- 1 > if (fx < 3) fx <- round(lx/10,0) > (arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML')) Call: arima(x = x[1:nx], order = c(par6, par3, par7), seasonal = list(order = c(par8, par4, par9), period = par5), include.mean = par10, method = "ML") Coefficients: ar1 ar2 ar3 ma1 sar1 sar2 -0.6655 -0.4381 0.3302 -0.8717 0.9260 -0.5028 s.e. 0.4415 0.5011 0.4061 0.1193 0.3381 0.1821 sigma^2 estimated as 9.422e-11: log likelihood = 474.24, aic = -934.49 > (forecast <- predict(arima.out,fx)) $pred Time Series: Start = 49 End = 60 Frequency = 1 [1] 7.040898e-05 8.776518e-05 6.996704e-05 7.129738e-05 8.565485e-05 [6] 7.133409e-05 7.571969e-05 8.361728e-05 7.117387e-05 7.704442e-05 [11] 8.109764e-05 7.182904e-05 $se Time Series: Start = 49 End = 60 Frequency = 1 [1] 9.706918e-06 1.041472e-05 1.045549e-05 1.108249e-05 1.113592e-05 [6] 1.117854e-05 1.184958e-05 1.184974e-05 1.187521e-05 1.233512e-05 [11] 1.233986e-05 1.238068e-05 > (lb <- forecast$pred - 1.96 * forecast$se) Time Series: Start = 49 End = 60 Frequency = 1 [1] 5.138342e-05 6.735233e-05 4.947429e-05 4.957569e-05 6.382845e-05 [6] 4.942415e-05 5.249451e-05 6.039178e-05 4.789845e-05 5.286759e-05 [11] 5.691151e-05 4.756292e-05 > (ub <- forecast$pred + 1.96 * forecast$se) Time Series: Start = 49 End = 60 Frequency = 1 [1] 8.943454e-05 1.081780e-04 9.045980e-05 9.301907e-05 1.074813e-04 [6] 9.324404e-05 9.894487e-05 1.068428e-04 9.444929e-05 1.012212e-04 [11] 1.052838e-04 9.609517e-05 > if (par2 == 0) { + x <- exp(x) + forecast$pred <- exp(forecast$pred) + lb <- exp(lb) + ub <- exp(ub) + } > if (par2 != 0) { + x <- x^(1/par2) + forecast$pred <- forecast$pred^(1/par2) + lb <- lb^(1/par2) + ub <- ub^(1/par2) + } > (actandfor <- c(x[1:nx], forecast$pred)) [1] 108.4000 117.0000 103.8000 100.8000 110.6000 104.0000 112.6000 107.3000 [9] 98.9000 109.8000 104.9000 102.2000 123.9000 124.9000 112.7000 121.9000 [17] 100.6000 104.3000 120.4000 107.5000 102.9000 125.6000 107.5000 108.8000 [25] 128.4000 121.1000 119.5000 128.7000 108.7000 105.5000 119.8000 111.3000 [33] 110.6000 120.1000 97.5000 107.7000 127.3000 117.2000 119.8000 116.2000 [41] 111.0000 112.4000 130.6000 109.1000 118.8000 123.9000 101.6000 112.8000 [49] 119.1752 106.7429 119.5510 118.4304 108.0498 118.3999 114.9200 109.3584 [57] 118.5331 113.9277 111.0442 117.9913 > (perc.se <- (ub-forecast$pred)/1.96/forecast$pred) Time Series: Start = 49 End = 60 Frequency = 1 [1] -0.05750948 -0.05065116 -0.06149704 -0.06352592 -0.05474062 -0.06395024 [7] -0.06387857 -0.05884794 -0.06730490 -0.06508247 -0.06242137 -0.06909785 > postscript(file="/var/www/html/rcomp/tmp/1wkyg1197040444.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mar=c(4,4,2,2),las=1) > ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub)) > plot(x,ylim=ylim,type='n',xlim=c(first,lx)) > usr <- par('usr') > rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon') > rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender') > abline(h= (-3:3)*2 , col ='gray', lty =3) > polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA) > lines(nx1:lx, lb , lty=2) > lines(nx1:lx, ub , lty=2) > lines(x, lwd=2) > lines(nx1:lx, forecast$pred , lwd=2 , col ='white') > box() > par(opar) > dev.off() null device 1 > prob.dec <- array(NA, dim=fx) > prob.sdec <- array(NA, dim=fx) > prob.ldec <- array(NA, dim=fx) > prob.pval <- array(NA, dim=fx) > perf.pe <- array(0, dim=fx) > perf.mape <- array(0, dim=fx) > perf.se <- array(0, dim=fx) > perf.mse <- array(0, dim=fx) > perf.rmse <- array(0, dim=fx) > for (i in 1:fx) { + locSD <- (ub[i] - forecast$pred[i]) / 1.96 + perf.pe[i] = (x[nx+i] - forecast$pred[i]) / forecast$pred[i] + perf.mape[i] = perf.mape[i] + abs(perf.pe[i]) + perf.se[i] = (x[nx+i] - forecast$pred[i])^2 + perf.mse[i] = perf.mse[i] + perf.se[i] + prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD) + prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD) + prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD) + prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD) + } > perf.mape = perf.mape / fx > perf.mse = perf.mse / fx > perf.rmse = sqrt(perf.mse) > postscript(file="/var/www/html/rcomp/tmp/2vh4e1197040445.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub))) > dum <- forecast$pred > dum[1:12] <- x[(nx+1):lx] > lines(dum, lty=1) > lines(ub,lty=3) > lines(lb,lty=3) > dev.off() null device 1 > load(file='/var/www/html/rcomp/createtable') > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'Y[t]',1,header=TRUE) > a<-table.element(a,'F[t]',1,header=TRUE) > a<-table.element(a,'95% LB',1,header=TRUE) > a<-table.element(a,'95% UB',1,header=TRUE) > a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE) > mylab <- paste('P(F[t]>Y[',nx,sep='') > mylab <- paste(mylab,'])',sep='') > a<-table.element(a,mylab,1,header=TRUE) > a<-table.row.end(a) > for (i in (nx-par5):nx) { + a<-table.row.start(a) + a<-table.element(a,i,header=TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.row.end(a) + } > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(x[nx+i],4)) + a<-table.element(a,round(forecast$pred[i],4)) + a<-table.element(a,round(lb[i],4)) + a<-table.element(a,round(ub[i],4)) + a<-table.element(a,round((1-prob.pval[i]),4)) + a<-table.element(a,round((1-prob.dec[i]),4)) + a<-table.element(a,round((1-prob.sdec[i]),4)) + a<-table.element(a,round((1-prob.ldec[i]),4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/3etrw1197040445.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',7,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'% S.E.',1,header=TRUE) > a<-table.element(a,'PE',1,header=TRUE) > a<-table.element(a,'MAPE',1,header=TRUE) > a<-table.element(a,'Sq.E',1,header=TRUE) > a<-table.element(a,'MSE',1,header=TRUE) > a<-table.element(a,'RMSE',1,header=TRUE) > a<-table.row.end(a) > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(perc.se[i],4)) + a<-table.element(a,round(perf.pe[i],4)) + a<-table.element(a,round(perf.mape[i],4)) + a<-table.element(a,round(perf.se[i],4)) + a<-table.element(a,round(perf.mse[i],4)) + a<-table.element(a,round(perf.rmse[i],4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/4v7vc1197040445.tab") > > system("convert tmp/1wkyg1197040444.ps tmp/1wkyg1197040444.png") > system("convert tmp/2vh4e1197040445.ps tmp/2vh4e1197040445.png") > > > proc.time() user system elapsed 0.880 0.323 0.999