R version 2.6.0 (2007-10-03) Copyright (C) 2007 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- c(48527,44446,46380,48950,38883,42928,37107,30186,32602,39892,32194,21629,59968,45694,55756,48554,41052,49822,39191,31994,35735,38930,33658,23849,58972,59249,63955,53785,52760,44795,37348,32370,32717,40974,33591,21124,58608,46865,51378,46235,47206,45382,41227,33795,31295,42625,33625,21538,56421,53152,53536,52408,41454,38271,35306,26414,31917,38030,27534,18387,50556,43901,48572,43899,37532,40357,35489,29027,34485,42598,30306,26451,47460,50104,61465,53726,39477,43895,31481,29896,33842,39120,33702,25094,51442,45594,52518,48564,41745,49585,32747,33379,35645,37034,35681,20972) > par10 = 'FALSE' > par9 = '1' > par8 = '0' > par7 = '0' > par6 = '3' > par5 = '12' > par4 = '1' > par3 = '0' > par2 = '1' > par1 = '12' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: AUTHOR(S), (YEAR), YOUR SOFTWARE TITLE (vNUMBER) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_YOURPAGE.wasp/ > #Source of accompanying publication: Office for Research, Development, and Education > #Technical description: Write here your technical program description (don't use hard returns!) > par1 <- as.numeric(par1) #cut off periods > par2 <- as.numeric(par2) #lambda > par3 <- as.numeric(par3) #degree of non-seasonal differencing > par4 <- as.numeric(par4) #degree of seasonal differencing > par5 <- as.numeric(par5) #seasonal period > par6 <- as.numeric(par6) #p > par7 <- as.numeric(par7) #q > par8 <- as.numeric(par8) #P > par9 <- as.numeric(par9) #Q > if (par10 == 'TRUE') par10 <- TRUE > if (par10 == 'FALSE') par10 <- FALSE > if (par2 == 0) x <- log(x) > if (par2 != 0) x <- x^par2 > lx <- length(x) > first <- lx - 2*par1 > nx <- lx - par1 > nx1 <- nx + 1 > fx <- lx - nx > if (fx < 1) { + fx <- par5 + nx1 <- lx + fx - 1 + first <- lx - 2*fx + } > first <- 1 > if (fx < 3) fx <- round(lx/10,0) > (arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML')) Call: arima(x = x[1:nx], order = c(par6, par3, par7), seasonal = list(order = c(par8, par4, par9), period = par5), include.mean = par10, method = "ML") Coefficients: ar1 ar2 ar3 sma1 0.2769 0.2653 0.1413 -0.9862 s.e. 0.1165 0.1180 0.1226 2.7401 sigma^2 estimated as 11880647: log likelihood = -699.98, aic = 1409.95 > (forecast <- predict(arima.out,fx)) $pred Time Series: Start = 85 End = 96 Frequency = 1 [1] 55808.88 50694.61 55720.37 50579.58 43367.43 44167.61 37085.61 30717.89 [9] 33267.60 40185.17 31819.42 22159.93 $se Time Series: Start = 85 End = 96 Frequency = 1 [1] 3668.324 3803.717 4001.455 4156.174 4229.074 4284.681 4320.204 4342.435 [9] 4356.822 4364.615 4368.237 4370.313 > (lb <- forecast$pred - 1.96 * forecast$se) Time Series: Start = 85 End = 96 Frequency = 1 [1] 48618.97 43239.32 47877.52 42433.48 35078.44 35769.63 28618.01 22206.71 [9] 24728.23 31630.52 23257.67 13594.12 > (ub <- forecast$pred + 1.96 * forecast$se) Time Series: Start = 85 End = 96 Frequency = 1 [1] 62998.80 58149.90 63563.23 58725.68 51656.41 52565.58 45553.21 39229.06 [9] 41806.97 48739.81 40381.16 30725.74 > if (par2 == 0) { + x <- exp(x) + forecast$pred <- exp(forecast$pred) + lb <- exp(lb) + ub <- exp(ub) + } > if (par2 != 0) { + x <- x^(1/par2) + forecast$pred <- forecast$pred^(1/par2) + lb <- lb^(1/par2) + ub <- ub^(1/par2) + } > (actandfor <- c(x[1:nx], forecast$pred)) [1] 48527.00 44446.00 46380.00 48950.00 38883.00 42928.00 37107.00 30186.00 [9] 32602.00 39892.00 32194.00 21629.00 59968.00 45694.00 55756.00 48554.00 [17] 41052.00 49822.00 39191.00 31994.00 35735.00 38930.00 33658.00 23849.00 [25] 58972.00 59249.00 63955.00 53785.00 52760.00 44795.00 37348.00 32370.00 [33] 32717.00 40974.00 33591.00 21124.00 58608.00 46865.00 51378.00 46235.00 [41] 47206.00 45382.00 41227.00 33795.00 31295.00 42625.00 33625.00 21538.00 [49] 56421.00 53152.00 53536.00 52408.00 41454.00 38271.00 35306.00 26414.00 [57] 31917.00 38030.00 27534.00 18387.00 50556.00 43901.00 48572.00 43899.00 [65] 37532.00 40357.00 35489.00 29027.00 34485.00 42598.00 30306.00 26451.00 [73] 47460.00 50104.00 61465.00 53726.00 39477.00 43895.00 31481.00 29896.00 [81] 33842.00 39120.00 33702.00 25094.00 55808.88 50694.61 55720.37 50579.58 [89] 43367.43 44167.61 37085.61 30717.89 33267.60 40185.17 31819.42 22159.93 > (perc.se <- (ub-forecast$pred)/1.96/forecast$pred) Time Series: Start = 85 End = 96 Frequency = 1 [1] 0.06573010 0.07503199 0.07181314 0.08217098 0.09751729 0.09700958 [7] 0.11649275 0.14136504 0.13096292 0.10861258 0.13728211 0.19721690 > postscript(file="/var/www/html/rcomp/tmp/1jp2x1197101564.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mar=c(4,4,2,2),las=1) > ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub)) > plot(x,ylim=ylim,type='n',xlim=c(first,lx)) > usr <- par('usr') > rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon') > rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender') > abline(h= (-3:3)*2 , col ='gray', lty =3) > polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA) > lines(nx1:lx, lb , lty=2) > lines(nx1:lx, ub , lty=2) > lines(x, lwd=2) > lines(nx1:lx, forecast$pred , lwd=2 , col ='white') > box() > par(opar) > dev.off() null device 1 > prob.dec <- array(NA, dim=fx) > prob.sdec <- array(NA, dim=fx) > prob.ldec <- array(NA, dim=fx) > prob.pval <- array(NA, dim=fx) > perf.pe <- array(0, dim=fx) > perf.mape <- array(0, dim=fx) > perf.se <- array(0, dim=fx) > perf.mse <- array(0, dim=fx) > perf.rmse <- array(0, dim=fx) > for (i in 1:fx) { + locSD <- (ub[i] - forecast$pred[i]) / 1.96 + perf.pe[i] = (x[nx+i] - forecast$pred[i]) / forecast$pred[i] + perf.mape[i] = perf.mape[i] + abs(perf.pe[i]) + perf.se[i] = (x[nx+i] - forecast$pred[i])^2 + perf.mse[i] = perf.mse[i] + perf.se[i] + prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD) + prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD) + prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD) + prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD) + } > perf.mape = perf.mape / fx > perf.mse = perf.mse / fx > perf.rmse = sqrt(perf.mse) > postscript(file="/var/www/html/rcomp/tmp/20aem1197101565.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub))) > dum <- forecast$pred > dum[1:12] <- x[(nx+1):lx] > lines(dum, lty=1) > lines(ub,lty=3) > lines(lb,lty=3) > dev.off() null device 1 > load(file='/var/www/html/rcomp/createtable') > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'Y[t]',1,header=TRUE) > a<-table.element(a,'F[t]',1,header=TRUE) > a<-table.element(a,'95% LB',1,header=TRUE) > a<-table.element(a,'95% UB',1,header=TRUE) > a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE) > mylab <- paste('P(F[t]>Y[',nx,sep='') > mylab <- paste(mylab,'])',sep='') > a<-table.element(a,mylab,1,header=TRUE) > a<-table.row.end(a) > for (i in (nx-par5):nx) { + a<-table.row.start(a) + a<-table.element(a,i,header=TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.row.end(a) + } > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(x[nx+i],4)) + a<-table.element(a,round(forecast$pred[i],4)) + a<-table.element(a,round(lb[i],4)) + a<-table.element(a,round(ub[i],4)) + a<-table.element(a,round((1-prob.pval[i]),4)) + a<-table.element(a,round((1-prob.dec[i]),4)) + a<-table.element(a,round((1-prob.sdec[i]),4)) + a<-table.element(a,round((1-prob.ldec[i]),4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/3hhos1197101565.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',7,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'% S.E.',1,header=TRUE) > a<-table.element(a,'PE',1,header=TRUE) > a<-table.element(a,'MAPE',1,header=TRUE) > a<-table.element(a,'Sq.E',1,header=TRUE) > a<-table.element(a,'MSE',1,header=TRUE) > a<-table.element(a,'RMSE',1,header=TRUE) > a<-table.row.end(a) > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(perc.se[i],4)) + a<-table.element(a,round(perf.pe[i],4)) + a<-table.element(a,round(perf.mape[i],4)) + a<-table.element(a,round(perf.se[i],4)) + a<-table.element(a,round(perf.mse[i],4)) + a<-table.element(a,round(perf.rmse[i],4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/45v5p1197101565.tab") > > system("convert tmp/1jp2x1197101564.ps tmp/1jp2x1197101564.png") > system("convert tmp/20aem1197101565.ps tmp/20aem1197101565.png") > > > proc.time() user system elapsed 1.156 0.336 1.303