R version 2.6.0 (2007-10-03) Copyright (C) 2007 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- c(7.4,7.2,7,6.6,6.4,6.4,6.8,7.3,7,7,6.7,6.7,6.3,6.2,6,6.3,6.2,6.1,6.2,6.6,6.6,7.8,7.4,7.4,7.5,7.4,7.4,7,6.9,6.9,7.6,7.7,7.6,8.2,8,8.1,8.3,8.2,8.1,7.7,7.6,7.7,8.2,8.4,8.4,8.6,8.4,8.5,8.7,8.7,8.6,7.4,7.3,7.4,9,9.2,9.2,8.5,8.3,8.3,8.6,8.6,8.5,8.1,8.1,8,8.6,8.7,8.7,8.6,8.4,8.4,8.7,8.7,8.5,8.3,8.3,8.3,8.1,8.2,8.1,8.1,7.9,7.7,8.1,8,7.7,7.8,7.6,7.4,7.7,7.9,7.6) > par10 = 'FALSE' > par9 = '1' > par8 = '2' > par7 = '0' > par6 = '3' > par5 = '12' > par4 = '0' > par3 = '1' > par2 = '0.0' > par1 = '12' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: AUTHOR(S), (YEAR), YOUR SOFTWARE TITLE (vNUMBER) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_YOURPAGE.wasp/ > #Source of accompanying publication: Office for Research, Development, and Education > #Technical description: Write here your technical program description (don't use hard returns!) > par1 <- as.numeric(par1) #cut off periods > par2 <- as.numeric(par2) #lambda > par3 <- as.numeric(par3) #degree of non-seasonal differencing > par4 <- as.numeric(par4) #degree of seasonal differencing > par5 <- as.numeric(par5) #seasonal period > par6 <- as.numeric(par6) #p > par7 <- as.numeric(par7) #q > par8 <- as.numeric(par8) #P > par9 <- as.numeric(par9) #Q > if (par10 == 'TRUE') par10 <- TRUE > if (par10 == 'FALSE') par10 <- FALSE > if (par2 == 0) x <- log(x) > if (par2 != 0) x <- x^par2 > lx <- length(x) > first <- lx - 2*par1 > nx <- lx - par1 > nx1 <- nx + 1 > fx <- lx - nx > if (fx < 1) { + fx <- par5 + nx1 <- lx + fx - 1 + first <- lx - 2*fx + } > first <- 1 > if (fx < 3) fx <- round(lx/10,0) > (arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML')) Call: arima(x = x[1:nx], order = c(par6, par3, par7), seasonal = list(order = c(par8, par4, par9), period = par5), include.mean = par10, method = "ML") Coefficients: ar1 ar2 ar3 sar1 sar2 sma1 0.0278 0.0152 -0.4170 -0.4445 0.5531 0.9762 s.e. 0.1014 0.1008 0.1053 0.0935 0.0916 0.1517 sigma^2 estimated as 0.001152: log likelihood = 151.05, aic = -288.11 Warning messages: 1: In log(s2) : NaNs produced 2: In log(s2) : NaNs produced > (forecast <- predict(arima.out,fx)) $pred Time Series: Start = 82 End = 93 Frequency = 1 [1] 2.098485 2.084713 2.087654 2.083154 2.083961 2.067853 2.088771 2.091325 [9] 2.088315 2.050733 2.058447 2.057410 $se Time Series: Start = 82 End = 93 Frequency = 1 [1] 0.03510371 0.05032774 0.06224328 0.06602516 0.06933321 0.07235245 [7] 0.07713098 0.08178798 0.08629067 0.08984085 0.09319278 0.09638360 > (lb <- forecast$pred - 1.96 * forecast$se) Time Series: Start = 82 End = 93 Frequency = 1 [1] 2.029682 1.986070 1.965657 1.953744 1.948067 1.926043 1.937594 1.931020 [9] 1.919185 1.874644 1.875789 1.868498 > (ub <- forecast$pred + 1.96 * forecast$se) Time Series: Start = 82 End = 93 Frequency = 1 [1] 2.167288 2.183355 2.209651 2.212563 2.219854 2.209664 2.239948 2.251629 [9] 2.257445 2.226821 2.241105 2.246322 > if (par2 == 0) { + x <- exp(x) + forecast$pred <- exp(forecast$pred) + lb <- exp(lb) + ub <- exp(ub) + } > if (par2 != 0) { + x <- x^(1/par2) + forecast$pred <- forecast$pred^(1/par2) + lb <- lb^(1/par2) + ub <- ub^(1/par2) + } > (actandfor <- c(x[1:nx], forecast$pred)) [1] 7.400000 7.200000 7.000000 6.600000 6.400000 6.400000 6.800000 7.300000 [9] 7.000000 7.000000 6.700000 6.700000 6.300000 6.200000 6.000000 6.300000 [17] 6.200000 6.100000 6.200000 6.600000 6.600000 7.800000 7.400000 7.400000 [25] 7.500000 7.400000 7.400000 7.000000 6.900000 6.900000 7.600000 7.700000 [33] 7.600000 8.200000 8.000000 8.100000 8.300000 8.200000 8.100000 7.700000 [41] 7.600000 7.700000 8.200000 8.400000 8.400000 8.600000 8.400000 8.500000 [49] 8.700000 8.700000 8.600000 7.400000 7.300000 7.400000 9.000000 9.200000 [57] 9.200000 8.500000 8.300000 8.300000 8.600000 8.600000 8.500000 8.100000 [65] 8.100000 8.000000 8.600000 8.700000 8.700000 8.600000 8.400000 8.400000 [73] 8.700000 8.700000 8.500000 8.300000 8.300000 8.300000 8.100000 8.200000 [81] 8.100000 8.153809 8.042281 8.065970 8.029753 8.036234 7.907830 8.074984 [89] 8.095633 8.071304 7.773593 7.833794 7.825676 > (perc.se <- (ub-forecast$pred)/1.96/forecast$pred) Time Series: Start = 82 End = 93 Frequency = 1 [1] 0.03633951 0.05289363 0.06619925 0.07048771 0.07426500 0.07773399 [7] 0.08326643 0.08870826 0.09401722 0.09823627 0.10224674 0.10608901 > postscript(file="/var/www/html/rcomp/tmp/137gx1197120941.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mar=c(4,4,2,2),las=1) > ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub)) > plot(x,ylim=ylim,type='n',xlim=c(first,lx)) > usr <- par('usr') > rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon') > rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender') > abline(h= (-3:3)*2 , col ='gray', lty =3) > polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA) > lines(nx1:lx, lb , lty=2) > lines(nx1:lx, ub , lty=2) > lines(x, lwd=2) > lines(nx1:lx, forecast$pred , lwd=2 , col ='white') > box() > par(opar) > dev.off() null device 1 > prob.dec <- array(NA, dim=fx) > prob.sdec <- array(NA, dim=fx) > prob.ldec <- array(NA, dim=fx) > prob.pval <- array(NA, dim=fx) > perf.pe <- array(0, dim=fx) > perf.mape <- array(0, dim=fx) > perf.se <- array(0, dim=fx) > perf.mse <- array(0, dim=fx) > perf.rmse <- array(0, dim=fx) > for (i in 1:fx) { + locSD <- (ub[i] - forecast$pred[i]) / 1.96 + perf.pe[i] = (x[nx+i] - forecast$pred[i]) / forecast$pred[i] + perf.mape[i] = perf.mape[i] + abs(perf.pe[i]) + perf.se[i] = (x[nx+i] - forecast$pred[i])^2 + perf.mse[i] = perf.mse[i] + perf.se[i] + prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD) + prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD) + prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD) + prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD) + } > perf.mape = perf.mape / fx > perf.mse = perf.mse / fx > perf.rmse = sqrt(perf.mse) > postscript(file="/var/www/html/rcomp/tmp/2516q1197120942.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub))) > dum <- forecast$pred > dum[1:12] <- x[(nx+1):lx] > lines(dum, lty=1) > lines(ub,lty=3) > lines(lb,lty=3) > dev.off() null device 1 > load(file='/var/www/html/rcomp/createtable') > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'Y[t]',1,header=TRUE) > a<-table.element(a,'F[t]',1,header=TRUE) > a<-table.element(a,'95% LB',1,header=TRUE) > a<-table.element(a,'95% UB',1,header=TRUE) > a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE) > mylab <- paste('P(F[t]>Y[',nx,sep='') > mylab <- paste(mylab,'])',sep='') > a<-table.element(a,mylab,1,header=TRUE) > a<-table.row.end(a) > for (i in (nx-par5):nx) { + a<-table.row.start(a) + a<-table.element(a,i,header=TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.row.end(a) + } > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(x[nx+i],4)) + a<-table.element(a,round(forecast$pred[i],4)) + a<-table.element(a,round(lb[i],4)) + a<-table.element(a,round(ub[i],4)) + a<-table.element(a,round((1-prob.pval[i]),4)) + a<-table.element(a,round((1-prob.dec[i]),4)) + a<-table.element(a,round((1-prob.sdec[i]),4)) + a<-table.element(a,round((1-prob.ldec[i]),4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/31oy61197120942.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',7,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'% S.E.',1,header=TRUE) > a<-table.element(a,'PE',1,header=TRUE) > a<-table.element(a,'MAPE',1,header=TRUE) > a<-table.element(a,'Sq.E',1,header=TRUE) > a<-table.element(a,'MSE',1,header=TRUE) > a<-table.element(a,'RMSE',1,header=TRUE) > a<-table.row.end(a) > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(perc.se[i],4)) + a<-table.element(a,round(perf.pe[i],4)) + a<-table.element(a,round(perf.mape[i],4)) + a<-table.element(a,round(perf.se[i],4)) + a<-table.element(a,round(perf.mse[i],4)) + a<-table.element(a,round(perf.rmse[i],4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/44jj51197120942.tab") > > system("convert tmp/137gx1197120941.ps tmp/137gx1197120941.png") > system("convert tmp/2516q1197120942.ps tmp/2516q1197120942.png") > > > proc.time() user system elapsed 3.375 0.717 3.924