R version 2.6.1 (2007-11-26) Copyright (C) 2007 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- c(153.4,159.5,157.4,169.1,172.6,161.7,159.2,157.4,153.9,144.8,142.2,140.1,143.4,153.3,166.9,170.6,182.8,170.3,156.6,155.2,154.7,151.6,152.1,153.2,149.5,149.7,144.3,140,137.8,132.2,128.9,123.1,120.4,122.8,126,124.5,120.6,114.7,111.7,109.1,108,107.7,99.9,103.7,103.4,103.4,104.7,105.8,105.3,103,103.8,103.4,105.8,101.4,97,94.3,96.6,97.1,95.7,96.9,97.4,95.3,93.6,91.5,93.1,91.7,94.3,93.9,90.9,88.3,91.3,91.7,92.4,92,95.6,95.8,96.4,99,107,109.7,116.2,115.9,113.8,112.6,113.7,115.9,110.3,111.3,113.4,108.2,104.8,106,110.9,115,118.4,121.4,128.8,131.7,141.7,142.9,139.4,134.7,125,113.6,111.5,108.5,112.3,116.6,115.5,120.1,132.9,128.1,129.3,132.5,131,124.9,120.8,122,122.1,127.4,135.2,137.3,135,136,138.4,134.7,138.4,133.9,133.6) > par10 = 'FALSE' > par9 = '1' > par8 = '2' > par7 = '1' > par6 = '3' > par5 = '12' > par4 = '0' > par3 = '1' > par2 = '0.0' > par1 = '12' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: AUTHOR(S), (YEAR), YOUR SOFTWARE TITLE (vNUMBER) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_YOURPAGE.wasp/ > #Source of accompanying publication: Office for Research, Development, and Education > #Technical description: Write here your technical program description (don't use hard returns!) > par1 <- as.numeric(par1) #cut off periods > par2 <- as.numeric(par2) #lambda > par3 <- as.numeric(par3) #degree of non-seasonal differencing > par4 <- as.numeric(par4) #degree of seasonal differencing > par5 <- as.numeric(par5) #seasonal period > par6 <- as.numeric(par6) #p > par7 <- as.numeric(par7) #q > par8 <- as.numeric(par8) #P > par9 <- as.numeric(par9) #Q > if (par10 == 'TRUE') par10 <- TRUE > if (par10 == 'FALSE') par10 <- FALSE > if (par2 == 0) x <- log(x) > if (par2 != 0) x <- x^par2 > lx <- length(x) > first <- lx - 2*par1 > nx <- lx - par1 > nx1 <- nx + 1 > fx <- lx - nx > if (fx < 1) { + fx <- par5 + nx1 <- lx + fx - 1 + first <- lx - 2*fx + } > first <- 1 > if (fx < 3) fx <- round(lx/10,0) > (arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML')) Call: arima(x = x[1:nx], order = c(par6, par3, par7), seasonal = list(order = c(par8, par4, par9), period = par5), include.mean = par10, method = "ML") Coefficients: ar1 ar2 ar3 ma1 sar1 sar2 sma1 -0.0740 0.1105 0.1188 0.3381 -0.4246 -0.0736 0.5684 s.e. 0.4011 0.1425 0.0995 0.3915 0.6367 0.1848 0.6384 sigma^2 estimated as 0.001117: log likelihood = 229.07, aic = -442.14 > (forecast <- predict(arima.out,fx)) $pred Time Series: Start = 118 End = 129 Frequency = 1 [1] 4.775667 4.765815 4.761849 4.750235 4.752564 4.748417 4.741550 4.748167 [9] 4.751781 4.755732 4.764355 4.762339 $se Time Series: Start = 118 End = 129 Frequency = 1 [1] 0.03342850 0.05388190 0.07039402 0.08635671 0.10032114 0.11293442 [7] 0.12453225 0.13520317 0.14514645 0.15447840 0.16328777 0.17165320 > (lb <- forecast$pred - 1.96 * forecast$se) Time Series: Start = 118 End = 129 Frequency = 1 [1] 4.710148 4.660207 4.623877 4.580975 4.555935 4.527066 4.497467 4.483169 [9] 4.467293 4.452954 4.444311 4.425899 > (ub <- forecast$pred + 1.96 * forecast$se) Time Series: Start = 118 End = 129 Frequency = 1 [1] 4.841187 4.871424 4.899821 4.919494 4.949194 4.969769 4.985633 5.013166 [9] 5.036268 5.058510 5.084400 5.098780 > if (par2 == 0) { + x <- exp(x) + forecast$pred <- exp(forecast$pred) + lb <- exp(lb) + ub <- exp(ub) + } > if (par2 != 0) { + x <- x^(1/par2) + forecast$pred <- forecast$pred^(1/par2) + lb <- lb^(1/par2) + ub <- ub^(1/par2) + } > (actandfor <- c(x[1:nx], forecast$pred)) [1] 153.4000 159.5000 157.4000 169.1000 172.6000 161.7000 159.2000 157.4000 [9] 153.9000 144.8000 142.2000 140.1000 143.4000 153.3000 166.9000 170.6000 [17] 182.8000 170.3000 156.6000 155.2000 154.7000 151.6000 152.1000 153.2000 [25] 149.5000 149.7000 144.3000 140.0000 137.8000 132.2000 128.9000 123.1000 [33] 120.4000 122.8000 126.0000 124.5000 120.6000 114.7000 111.7000 109.1000 [41] 108.0000 107.7000 99.9000 103.7000 103.4000 103.4000 104.7000 105.8000 [49] 105.3000 103.0000 103.8000 103.4000 105.8000 101.4000 97.0000 94.3000 [57] 96.6000 97.1000 95.7000 96.9000 97.4000 95.3000 93.6000 91.5000 [65] 93.1000 91.7000 94.3000 93.9000 90.9000 88.3000 91.3000 91.7000 [73] 92.4000 92.0000 95.6000 95.8000 96.4000 99.0000 107.0000 109.7000 [81] 116.2000 115.9000 113.8000 112.6000 113.7000 115.9000 110.3000 111.3000 [89] 113.4000 108.2000 104.8000 106.0000 110.9000 115.0000 118.4000 121.4000 [97] 128.8000 131.7000 141.7000 142.9000 139.4000 134.7000 125.0000 113.6000 [105] 111.5000 108.5000 112.3000 116.6000 115.5000 120.1000 132.9000 128.1000 [113] 129.3000 132.5000 131.0000 124.9000 120.8000 118.5894 117.4268 116.9620 [121] 115.6114 115.8811 115.4015 114.6117 115.3726 115.7903 116.2487 117.2555 [129] 117.0194 > (perc.se <- (ub-forecast$pred)/1.96/forecast$pred) Time Series: Start = 118 End = 129 Frequency = 1 [1] 0.03454792 0.05682995 0.07548149 0.09409543 0.11086371 0.12640912 [7] 0.14104620 0.15481054 0.16789800 0.18041503 0.19244306 0.20405880 > postscript(file="/var/www/html/rcomp/tmp/1cgxf1197381291.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mar=c(4,4,2,2),las=1) > ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub)) > plot(x,ylim=ylim,type='n',xlim=c(first,lx)) > usr <- par('usr') > rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon') > rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender') > abline(h= (-3:3)*2 , col ='gray', lty =3) > polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA) > lines(nx1:lx, lb , lty=2) > lines(nx1:lx, ub , lty=2) > lines(x, lwd=2) > lines(nx1:lx, forecast$pred , lwd=2 , col ='white') > box() > par(opar) > dev.off() null device 1 > prob.dec <- array(NA, dim=fx) > prob.sdec <- array(NA, dim=fx) > prob.ldec <- array(NA, dim=fx) > prob.pval <- array(NA, dim=fx) > perf.pe <- array(0, dim=fx) > perf.mape <- array(0, dim=fx) > perf.se <- array(0, dim=fx) > perf.mse <- array(0, dim=fx) > perf.rmse <- array(0, dim=fx) > for (i in 1:fx) { + locSD <- (ub[i] - forecast$pred[i]) / 1.96 + perf.pe[i] = (x[nx+i] - forecast$pred[i]) / forecast$pred[i] + perf.mape[i] = perf.mape[i] + abs(perf.pe[i]) + perf.se[i] = (x[nx+i] - forecast$pred[i])^2 + perf.mse[i] = perf.mse[i] + perf.se[i] + prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD) + prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD) + prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD) + prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD) + } > perf.mape = perf.mape / fx > perf.mse = perf.mse / fx > perf.rmse = sqrt(perf.mse) > postscript(file="/var/www/html/rcomp/tmp/2bsb01197381291.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub))) > dum <- forecast$pred > dum[1:12] <- x[(nx+1):lx] > lines(dum, lty=1) > lines(ub,lty=3) > lines(lb,lty=3) > dev.off() null device 1 > load(file='/var/www/html/rcomp/createtable') > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'Y[t]',1,header=TRUE) > a<-table.element(a,'F[t]',1,header=TRUE) > a<-table.element(a,'95% LB',1,header=TRUE) > a<-table.element(a,'95% UB',1,header=TRUE) > a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE) > mylab <- paste('P(F[t]>Y[',nx,sep='') > mylab <- paste(mylab,'])',sep='') > a<-table.element(a,mylab,1,header=TRUE) > a<-table.row.end(a) > for (i in (nx-par5):nx) { + a<-table.row.start(a) + a<-table.element(a,i,header=TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.row.end(a) + } > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(x[nx+i],4)) + a<-table.element(a,round(forecast$pred[i],4)) + a<-table.element(a,round(lb[i],4)) + a<-table.element(a,round(ub[i],4)) + a<-table.element(a,round((1-prob.pval[i]),4)) + a<-table.element(a,round((1-prob.dec[i]),4)) + a<-table.element(a,round((1-prob.sdec[i]),4)) + a<-table.element(a,round((1-prob.ldec[i]),4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/358jf1197381291.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',7,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'% S.E.',1,header=TRUE) > a<-table.element(a,'PE',1,header=TRUE) > a<-table.element(a,'MAPE',1,header=TRUE) > a<-table.element(a,'Sq.E',1,header=TRUE) > a<-table.element(a,'MSE',1,header=TRUE) > a<-table.element(a,'RMSE',1,header=TRUE) > a<-table.row.end(a) > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(perc.se[i],4)) + a<-table.element(a,round(perf.pe[i],4)) + a<-table.element(a,round(perf.mape[i],4)) + a<-table.element(a,round(perf.se[i],4)) + a<-table.element(a,round(perf.mse[i],4)) + a<-table.element(a,round(perf.rmse[i],4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/4wpyp1197381291.tab") > > system("convert tmp/1cgxf1197381291.ps tmp/1cgxf1197381291.png") > system("convert tmp/2bsb01197381291.ps tmp/2bsb01197381291.png") > > > proc.time() user system elapsed 5.717 1.199 6.333