R version 2.6.0 (2007-10-03) Copyright (C) 2007 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- c(112,118,132,129,121,135,148,148,136,119,104,118,115,126,141,135,125,149,170,170,158,133,114,140,145,150,178,163,172,178,199,199,184,162,146,166,171,180,193,181,183,218,230,242,209,191,172,194,196,196,236,235,229,243,264,272,237,211,180,201,204,188,235,227,234,264,302,293,259,229,203,229,242,233,267,269,270,315,364,347,312,274,237,278,284,277,317,313,318,374,413,405,355,306,271,306,315,301,356,348,355,422,465,467,404,347,305,336,340,318,362,348,363,435,491,505,404,359,310,337,360,342,406,396,420,472,548,559,463,407,362,405,417,391,419,461,472,535,622,606,508,461,390,432) > par10 = 'FALSE' > par9 = '0' > par8 = '1' > par7 = '1' > par6 = '1' > par5 = '12' > par4 = '1' > par3 = '0' > par2 = '0.0' > par1 = '12' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: AUTHOR(S), (YEAR), YOUR SOFTWARE TITLE (vNUMBER) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_YOURPAGE.wasp/ > #Source of accompanying publication: Office for Research, Development, and Education > #Technical description: Write here your technical program description (don't use hard returns!) > par1 <- as.numeric(par1) #cut off periods > par2 <- as.numeric(par2) #lambda > par3 <- as.numeric(par3) #degree of non-seasonal differencing > par4 <- as.numeric(par4) #degree of seasonal differencing > par5 <- as.numeric(par5) #seasonal period > par6 <- as.numeric(par6) #p > par7 <- as.numeric(par7) #q > par8 <- as.numeric(par8) #P > par9 <- as.numeric(par9) #Q > if (par10 == 'TRUE') par10 <- TRUE > if (par10 == 'FALSE') par10 <- FALSE > if (par2 == 0) x <- log(x) > if (par2 != 0) x <- x^par2 > lx <- length(x) > first <- lx - 2*par1 > nx <- lx - par1 > nx1 <- nx + 1 > fx <- lx - nx > if (fx < 1) { + fx <- par5 + nx1 <- lx + fx - 1 + first <- lx - 2*fx + } > first <- 1 > if (fx < 3) fx <- round(lx/10,0) > (arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML')) Call: arima(x = x[1:nx], order = c(par6, par3, par7), seasonal = list(order = c(par8, par4, par9), period = par5), include.mean = par10, method = "ML") Coefficients: ar1 ma1 sar1 0.9912 -0.3849 -0.4652 s.e. 0.0089 0.0917 0.0828 sigma^2 estimated as 0.001397: log likelihood = 221.39, aic = -434.77 > (forecast <- predict(arima.out,fx)) $pred Time Series: Start = 133 End = 144 Frequency = 1 [1] 6.030043 5.969992 6.120531 6.087371 6.137009 6.282161 6.416904 6.439189 [9] 6.233203 6.107925 5.975609 6.073111 $se Time Series: Start = 133 End = 144 Frequency = 1 [1] 0.03738029 0.04371386 0.04914793 0.05395643 0.05829570 0.06226514 [7] 0.06593271 0.06934739 0.07254590 0.07555662 0.07840208 0.08110053 > (lb <- forecast$pred - 1.96 * forecast$se) Time Series: Start = 133 End = 144 Frequency = 1 [1] 5.956778 5.884313 6.024201 5.981617 6.022750 6.160122 6.287676 6.303268 [9] 6.091013 5.959834 5.821941 5.914154 > (ub <- forecast$pred + 1.96 * forecast$se) Time Series: Start = 133 End = 144 Frequency = 1 [1] 6.103309 6.055671 6.216861 6.193126 6.251269 6.404201 6.546132 6.575109 [9] 6.375393 6.256016 6.129277 6.232068 > if (par2 == 0) { + x <- exp(x) + forecast$pred <- exp(forecast$pred) + lb <- exp(lb) + ub <- exp(ub) + } > if (par2 != 0) { + x <- x^(1/par2) + forecast$pred <- forecast$pred^(1/par2) + lb <- lb^(1/par2) + ub <- ub^(1/par2) + } > (actandfor <- c(x[1:nx], forecast$pred)) [1] 112.0000 118.0000 132.0000 129.0000 121.0000 135.0000 148.0000 148.0000 [9] 136.0000 119.0000 104.0000 118.0000 115.0000 126.0000 141.0000 135.0000 [17] 125.0000 149.0000 170.0000 170.0000 158.0000 133.0000 114.0000 140.0000 [25] 145.0000 150.0000 178.0000 163.0000 172.0000 178.0000 199.0000 199.0000 [33] 184.0000 162.0000 146.0000 166.0000 171.0000 180.0000 193.0000 181.0000 [41] 183.0000 218.0000 230.0000 242.0000 209.0000 191.0000 172.0000 194.0000 [49] 196.0000 196.0000 236.0000 235.0000 229.0000 243.0000 264.0000 272.0000 [57] 237.0000 211.0000 180.0000 201.0000 204.0000 188.0000 235.0000 227.0000 [65] 234.0000 264.0000 302.0000 293.0000 259.0000 229.0000 203.0000 229.0000 [73] 242.0000 233.0000 267.0000 269.0000 270.0000 315.0000 364.0000 347.0000 [81] 312.0000 274.0000 237.0000 278.0000 284.0000 277.0000 317.0000 313.0000 [89] 318.0000 374.0000 413.0000 405.0000 355.0000 306.0000 271.0000 306.0000 [97] 315.0000 301.0000 356.0000 348.0000 355.0000 422.0000 465.0000 467.0000 [105] 404.0000 347.0000 305.0000 336.0000 340.0000 318.0000 362.0000 348.0000 [113] 363.0000 435.0000 491.0000 505.0000 404.0000 359.0000 310.0000 337.0000 [121] 360.0000 342.0000 406.0000 396.0000 420.0000 472.0000 548.0000 559.0000 [129] 463.0000 407.0000 362.0000 405.0000 415.7331 391.5025 455.1064 440.2625 [137] 462.6677 534.9437 612.1049 625.8987 509.3843 449.4054 393.7077 434.0290 > (perc.se <- (ub-forecast$pred)/1.96/forecast$pred) Time Series: Start = 133 End = 144 Frequency = 1 [1] 0.03878369 0.04564119 0.05159301 0.05691279 0.06175667 0.06622394 [7] 0.07038249 0.07428126 0.07795694 0.08143795 0.08474682 0.08790183 > postscript(file="/var/www/html/rcomp/tmp/1emvx1197381017.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mar=c(4,4,2,2),las=1) > ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub)) > plot(x,ylim=ylim,type='n',xlim=c(first,lx)) > usr <- par('usr') > rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon') > rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender') > abline(h= (-3:3)*2 , col ='gray', lty =3) > polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA) > lines(nx1:lx, lb , lty=2) > lines(nx1:lx, ub , lty=2) > lines(x, lwd=2) > lines(nx1:lx, forecast$pred , lwd=2 , col ='white') > box() > par(opar) > dev.off() null device 1 > prob.dec <- array(NA, dim=fx) > prob.sdec <- array(NA, dim=fx) > prob.ldec <- array(NA, dim=fx) > prob.pval <- array(NA, dim=fx) > perf.pe <- array(0, dim=fx) > perf.mape <- array(0, dim=fx) > perf.se <- array(0, dim=fx) > perf.mse <- array(0, dim=fx) > perf.rmse <- array(0, dim=fx) > for (i in 1:fx) { + locSD <- (ub[i] - forecast$pred[i]) / 1.96 + perf.pe[i] = (x[nx+i] - forecast$pred[i]) / forecast$pred[i] + perf.mape[i] = perf.mape[i] + abs(perf.pe[i]) + perf.se[i] = (x[nx+i] - forecast$pred[i])^2 + perf.mse[i] = perf.mse[i] + perf.se[i] + prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD) + prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD) + prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD) + prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD) + } > perf.mape = perf.mape / fx > perf.mse = perf.mse / fx > perf.rmse = sqrt(perf.mse) > postscript(file="/var/www/html/rcomp/tmp/2awpc1197381017.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub))) > dum <- forecast$pred > dum[1:12] <- x[(nx+1):lx] > lines(dum, lty=1) > lines(ub,lty=3) > lines(lb,lty=3) > dev.off() null device 1 > load(file='/var/www/html/rcomp/createtable') > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'Y[t]',1,header=TRUE) > a<-table.element(a,'F[t]',1,header=TRUE) > a<-table.element(a,'95% LB',1,header=TRUE) > a<-table.element(a,'95% UB',1,header=TRUE) > a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE) > mylab <- paste('P(F[t]>Y[',nx,sep='') > mylab <- paste(mylab,'])',sep='') > a<-table.element(a,mylab,1,header=TRUE) > a<-table.row.end(a) > for (i in (nx-par5):nx) { + a<-table.row.start(a) + a<-table.element(a,i,header=TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.row.end(a) + } > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(x[nx+i],4)) + a<-table.element(a,round(forecast$pred[i],4)) + a<-table.element(a,round(lb[i],4)) + a<-table.element(a,round(ub[i],4)) + a<-table.element(a,round((1-prob.pval[i]),4)) + a<-table.element(a,round((1-prob.dec[i]),4)) + a<-table.element(a,round((1-prob.sdec[i]),4)) + a<-table.element(a,round((1-prob.ldec[i]),4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/37ek31197381017.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',7,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'% S.E.',1,header=TRUE) > a<-table.element(a,'PE',1,header=TRUE) > a<-table.element(a,'MAPE',1,header=TRUE) > a<-table.element(a,'Sq.E',1,header=TRUE) > a<-table.element(a,'MSE',1,header=TRUE) > a<-table.element(a,'RMSE',1,header=TRUE) > a<-table.row.end(a) > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(perc.se[i],4)) + a<-table.element(a,round(perf.pe[i],4)) + a<-table.element(a,round(perf.mape[i],4)) + a<-table.element(a,round(perf.se[i],4)) + a<-table.element(a,round(perf.mse[i],4)) + a<-table.element(a,round(perf.rmse[i],4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/4nma31197381017.tab") > > system("convert tmp/1emvx1197381017.ps tmp/1emvx1197381017.png") > system("convert tmp/2awpc1197381017.ps tmp/2awpc1197381017.png") > > > proc.time() user system elapsed 1.538 0.361 1.713