R version 2.6.0 (2007-10-03) Copyright (C) 2007 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- c(112.1,104.2,102.4,100.3,102.6,101.5,103.4,99.4,97.9,98,90.2,87.1,91.8,94.8,91.8,89.3,91.7,86.2,82.8,82.3,79.8,79.4,85.3,87.5,88.3,88.6,94.9,94.7,92.6,91.8,96.4,96.4,107.1,111.9,107.8,109.2,115.3,119.2,107.8,106.8,104.2,94.8,97.5,98.3,100.6,94.9,93.6,98,104.3,103.9,105.3,102.6,103.3,107.9,107.8,109.8,110.6,110.8,119.3,128.1,127.6,137.9,151.4,143.6,143.4,141.9,135.2,133.1,129.6,134.1,136.8,143.5,162.5,163.1,157.2,158.8,155.4,148.5,154.2,153.3,149.4,147.9,156,163,159.1,159.5,157.3,156.4,156.6,162.4,166.8,162.6,168.1) > par10 = 'FALSE' > par9 = '0' > par8 = '0' > par7 = '1' > par6 = '1' > par5 = '12' > par4 = '0' > par3 = '1' > par2 = '1' > par1 = '12' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: AUTHOR(S), (YEAR), YOUR SOFTWARE TITLE (vNUMBER) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_YOURPAGE.wasp/ > #Source of accompanying publication: Office for Research, Development, and Education > #Technical description: Write here your technical program description (don't use hard returns!) > par1 <- as.numeric(par1) #cut off periods > par2 <- as.numeric(par2) #lambda > par3 <- as.numeric(par3) #degree of non-seasonal differencing > par4 <- as.numeric(par4) #degree of seasonal differencing > par5 <- as.numeric(par5) #seasonal period > par6 <- as.numeric(par6) #p > par7 <- as.numeric(par7) #q > par8 <- as.numeric(par8) #P > par9 <- as.numeric(par9) #Q > if (par10 == 'TRUE') par10 <- TRUE > if (par10 == 'FALSE') par10 <- FALSE > if (par2 == 0) x <- log(x) > if (par2 != 0) x <- x^par2 > lx <- length(x) > first <- lx - 2*par1 > nx <- lx - par1 > nx1 <- nx + 1 > fx <- lx - nx > if (fx < 1) { + fx <- par5 + nx1 <- lx + fx - 1 + first <- lx - 2*fx + } > first <- 1 > if (fx < 3) fx <- round(lx/10,0) > (arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML')) Call: arima(x = x[1:nx], order = c(par6, par3, par7), seasonal = list(order = c(par8, par4, par9), period = par5), include.mean = par10, method = "ML") Coefficients: ar1 ma1 -0.4886 0.7592 s.e. 0.1764 0.1234 sigma^2 estimated as 23.92: log likelihood = -240.61, aic = 487.23 > (forecast <- predict(arima.out,fx)) $pred Time Series: Start = 82 End = 93 Frequency = 1 [1] 149.8710 149.6409 149.7533 149.6984 149.7252 149.7121 149.7185 149.7154 [9] 149.7169 149.7161 149.7165 149.7163 $se Time Series: Start = 82 End = 93 Frequency = 1 [1] 4.891291 7.909040 9.672606 11.321884 12.689266 13.954216 15.099543 [8] 16.170354 17.171567 18.118908 19.018481 19.877683 > (lb <- forecast$pred - 1.96 * forecast$se) Time Series: Start = 82 End = 93 Frequency = 1 [1] 140.2840 134.1391 130.7950 127.5075 124.8542 122.3618 120.1234 118.0215 [9] 116.0606 114.2031 112.4403 110.7561 > (ub <- forecast$pred + 1.96 * forecast$se) Time Series: Start = 82 End = 93 Frequency = 1 [1] 159.4579 165.1426 168.7116 171.8893 174.5962 177.0624 179.3136 181.4093 [9] 183.3732 185.2292 186.9927 188.6766 > if (par2 == 0) { + x <- exp(x) + forecast$pred <- exp(forecast$pred) + lb <- exp(lb) + ub <- exp(ub) + } > if (par2 != 0) { + x <- x^(1/par2) + forecast$pred <- forecast$pred^(1/par2) + lb <- lb^(1/par2) + ub <- ub^(1/par2) + } > (actandfor <- c(x[1:nx], forecast$pred)) [1] 112.1000 104.2000 102.4000 100.3000 102.6000 101.5000 103.4000 99.4000 [9] 97.9000 98.0000 90.2000 87.1000 91.8000 94.8000 91.8000 89.3000 [17] 91.7000 86.2000 82.8000 82.3000 79.8000 79.4000 85.3000 87.5000 [25] 88.3000 88.6000 94.9000 94.7000 92.6000 91.8000 96.4000 96.4000 [33] 107.1000 111.9000 107.8000 109.2000 115.3000 119.2000 107.8000 106.8000 [41] 104.2000 94.8000 97.5000 98.3000 100.6000 94.9000 93.6000 98.0000 [49] 104.3000 103.9000 105.3000 102.6000 103.3000 107.9000 107.8000 109.8000 [57] 110.6000 110.8000 119.3000 128.1000 127.6000 137.9000 151.4000 143.6000 [65] 143.4000 141.9000 135.2000 133.1000 129.6000 134.1000 136.8000 143.5000 [73] 162.5000 163.1000 157.2000 158.8000 155.4000 148.5000 154.2000 153.3000 [81] 149.4000 149.8710 149.6409 149.7533 149.6984 149.7252 149.7121 149.7185 [89] 149.7154 149.7169 149.7161 149.7165 149.7163 > (perc.se <- (ub-forecast$pred)/1.96/forecast$pred) Time Series: Start = 82 End = 93 Frequency = 1 [1] 0.03263668 0.05285348 0.06459027 0.07563131 0.08475037 0.09320701 [7] 0.10085289 0.10800731 0.11469359 0.12102173 0.12702995 0.13276897 > postscript(file="/var/www/html/rcomp/tmp/167g41197390968.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mar=c(4,4,2,2),las=1) > ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub)) > plot(x,ylim=ylim,type='n',xlim=c(first,lx)) > usr <- par('usr') > rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon') > rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender') > abline(h= (-3:3)*2 , col ='gray', lty =3) > polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA) > lines(nx1:lx, lb , lty=2) > lines(nx1:lx, ub , lty=2) > lines(x, lwd=2) > lines(nx1:lx, forecast$pred , lwd=2 , col ='white') > box() > par(opar) > dev.off() null device 1 > prob.dec <- array(NA, dim=fx) > prob.sdec <- array(NA, dim=fx) > prob.ldec <- array(NA, dim=fx) > prob.pval <- array(NA, dim=fx) > perf.pe <- array(0, dim=fx) > perf.mape <- array(0, dim=fx) > perf.se <- array(0, dim=fx) > perf.mse <- array(0, dim=fx) > perf.rmse <- array(0, dim=fx) > for (i in 1:fx) { + locSD <- (ub[i] - forecast$pred[i]) / 1.96 + perf.pe[i] = (x[nx+i] - forecast$pred[i]) / forecast$pred[i] + perf.mape[i] = perf.mape[i] + abs(perf.pe[i]) + perf.se[i] = (x[nx+i] - forecast$pred[i])^2 + perf.mse[i] = perf.mse[i] + perf.se[i] + prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD) + prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD) + prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD) + prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD) + } > perf.mape = perf.mape / fx > perf.mse = perf.mse / fx > perf.rmse = sqrt(perf.mse) > postscript(file="/var/www/html/rcomp/tmp/2ffnt1197390968.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub))) > dum <- forecast$pred > dum[1:12] <- x[(nx+1):lx] > lines(dum, lty=1) > lines(ub,lty=3) > lines(lb,lty=3) > dev.off() null device 1 > load(file='/var/www/html/rcomp/createtable') > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'Y[t]',1,header=TRUE) > a<-table.element(a,'F[t]',1,header=TRUE) > a<-table.element(a,'95% LB',1,header=TRUE) > a<-table.element(a,'95% UB',1,header=TRUE) > a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE) > mylab <- paste('P(F[t]>Y[',nx,sep='') > mylab <- paste(mylab,'])',sep='') > a<-table.element(a,mylab,1,header=TRUE) > a<-table.row.end(a) > for (i in (nx-par5):nx) { + a<-table.row.start(a) + a<-table.element(a,i,header=TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.row.end(a) + } > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(x[nx+i],4)) + a<-table.element(a,round(forecast$pred[i],4)) + a<-table.element(a,round(lb[i],4)) + a<-table.element(a,round(ub[i],4)) + a<-table.element(a,round((1-prob.pval[i]),4)) + a<-table.element(a,round((1-prob.dec[i]),4)) + a<-table.element(a,round((1-prob.sdec[i]),4)) + a<-table.element(a,round((1-prob.ldec[i]),4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/3m6iu1197390968.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',7,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'% S.E.',1,header=TRUE) > a<-table.element(a,'PE',1,header=TRUE) > a<-table.element(a,'MAPE',1,header=TRUE) > a<-table.element(a,'Sq.E',1,header=TRUE) > a<-table.element(a,'MSE',1,header=TRUE) > a<-table.element(a,'RMSE',1,header=TRUE) > a<-table.row.end(a) > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(perc.se[i],4)) + a<-table.element(a,round(perf.pe[i],4)) + a<-table.element(a,round(perf.mape[i],4)) + a<-table.element(a,round(perf.se[i],4)) + a<-table.element(a,round(perf.mse[i],4)) + a<-table.element(a,round(perf.rmse[i],4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/4ctom1197390968.tab") > > system("convert tmp/167g41197390968.ps tmp/167g41197390968.png") > system("convert tmp/2ffnt1197390968.ps tmp/2ffnt1197390968.png") > > > proc.time() user system elapsed 0.853 0.316 1.003