R version 2.6.0 (2007-10-03) Copyright (C) 2007 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- c(102.7,103.2,105.6,103.9,107.2,100.7,92.1,90.3,93.4,98.5,100.8,102.3,104.7,101.1,101.4,99.5,98.4,96.3,100.7,101.2,100.3,97.8,97.4,98.6,99.7,99,98.1,97,98.5,103.8,114.4,124.5,134.2,131.8,125.6,119.9,114.9,115.5,112.5,111.4,115.3,110.8,103.7,111.1,113,111.2,117.6,121.7,127.3,129.8,137.1,141.4,137.4,130.7,117.2,110.8,111.4,108.2,108.8,110.2,109.5,109.5,116,111.2,112.1,114,119.1,114.1,115.1,115.4,110.8,116,119.2,126.5,127.8,131.3,140.3,137.3,143,134.5,139.9,159.3,170.4,175,175.8,180.9,180.3,169.6,172.3,184.8,177.7,184.6,211.4) > par10 = 'FALSE' > par9 = '0' > par8 = '2' > par7 = '1' > par6 = '0' > par5 = '12' > par4 = '0' > par3 = '1' > par2 = '1' > par1 = '12' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: AUTHOR(S), (YEAR), YOUR SOFTWARE TITLE (vNUMBER) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_YOURPAGE.wasp/ > #Source of accompanying publication: Office for Research, Development, and Education > #Technical description: Write here your technical program description (don't use hard returns!) > par1 <- as.numeric(par1) #cut off periods > par2 <- as.numeric(par2) #lambda > par3 <- as.numeric(par3) #degree of non-seasonal differencing > par4 <- as.numeric(par4) #degree of seasonal differencing > par5 <- as.numeric(par5) #seasonal period > par6 <- as.numeric(par6) #p > par7 <- as.numeric(par7) #q > par8 <- as.numeric(par8) #P > par9 <- as.numeric(par9) #Q > if (par10 == 'TRUE') par10 <- TRUE > if (par10 == 'FALSE') par10 <- FALSE > if (par2 == 0) x <- log(x) > if (par2 != 0) x <- x^par2 > lx <- length(x) > first <- lx - 2*par1 > nx <- lx - par1 > nx1 <- nx + 1 > fx <- lx - nx > if (fx < 1) { + fx <- par5 + nx1 <- lx + fx - 1 + first <- lx - 2*fx + } > first <- 1 > if (fx < 3) fx <- round(lx/10,0) > (arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML')) Call: arima(x = x[1:nx], order = c(par6, par3, par7), seasonal = list(order = c(par8, par4, par9), period = par5), include.mean = par10, method = "ML") Coefficients: ma1 sar1 sar2 0.2315 0.0481 -0.3264 s.e. 0.1022 0.1265 0.1137 sigma^2 estimated as 18.33: log likelihood = -231.25, aic = 470.5 > (forecast <- predict(arima.out,fx)) $pred Time Series: Start = 82 End = 93 Frequency = 1 [1] 142.8308 142.4135 142.2069 142.5894 142.9408 140.8819 142.6170 142.7565 [9] 141.9920 140.6018 141.8246 141.7581 $se Time Series: Start = 82 End = 93 Frequency = 1 [1] 4.281819 6.792745 8.599349 10.087428 11.382601 12.544761 13.608028 [8] 14.594035 15.517514 16.389041 17.216506 18.005985 > (lb <- forecast$pred - 1.96 * forecast$se) Time Series: Start = 82 End = 93 Frequency = 1 [1] 134.4384 129.0997 125.3522 122.8181 120.6309 116.2942 115.9453 114.1522 [9] 111.5777 108.4793 108.0802 106.4664 > (ub <- forecast$pred + 1.96 * forecast$se) Time Series: Start = 82 End = 93 Frequency = 1 [1] 151.2232 155.7273 159.0616 162.3608 165.2507 165.4697 169.2888 171.3608 [9] 172.4063 172.7244 175.5689 177.0499 > if (par2 == 0) { + x <- exp(x) + forecast$pred <- exp(forecast$pred) + lb <- exp(lb) + ub <- exp(ub) + } > if (par2 != 0) { + x <- x^(1/par2) + forecast$pred <- forecast$pred^(1/par2) + lb <- lb^(1/par2) + ub <- ub^(1/par2) + } > (actandfor <- c(x[1:nx], forecast$pred)) [1] 102.7000 103.2000 105.6000 103.9000 107.2000 100.7000 92.1000 90.3000 [9] 93.4000 98.5000 100.8000 102.3000 104.7000 101.1000 101.4000 99.5000 [17] 98.4000 96.3000 100.7000 101.2000 100.3000 97.8000 97.4000 98.6000 [25] 99.7000 99.0000 98.1000 97.0000 98.5000 103.8000 114.4000 124.5000 [33] 134.2000 131.8000 125.6000 119.9000 114.9000 115.5000 112.5000 111.4000 [41] 115.3000 110.8000 103.7000 111.1000 113.0000 111.2000 117.6000 121.7000 [49] 127.3000 129.8000 137.1000 141.4000 137.4000 130.7000 117.2000 110.8000 [57] 111.4000 108.2000 108.8000 110.2000 109.5000 109.5000 116.0000 111.2000 [65] 112.1000 114.0000 119.1000 114.1000 115.1000 115.4000 110.8000 116.0000 [73] 119.2000 126.5000 127.8000 131.3000 140.3000 137.3000 143.0000 134.5000 [81] 139.9000 142.8308 142.4135 142.2069 142.5894 142.9408 140.8819 142.6170 [89] 142.7565 141.9920 140.6018 141.8246 141.7581 > (perc.se <- (ub-forecast$pred)/1.96/forecast$pred) Time Series: Start = 82 End = 93 Frequency = 1 [1] 0.02997826 0.04769733 0.06047068 0.07074458 0.07963157 0.08904450 [7] 0.09541657 0.10223025 0.10928443 0.11656349 0.12139297 0.12701906 > postscript(file="/var/www/html/rcomp/tmp/15bkn1197392572.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mar=c(4,4,2,2),las=1) > ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub)) > plot(x,ylim=ylim,type='n',xlim=c(first,lx)) > usr <- par('usr') > rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon') > rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender') > abline(h= (-3:3)*2 , col ='gray', lty =3) > polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA) > lines(nx1:lx, lb , lty=2) > lines(nx1:lx, ub , lty=2) > lines(x, lwd=2) > lines(nx1:lx, forecast$pred , lwd=2 , col ='white') > box() > par(opar) > dev.off() null device 1 > prob.dec <- array(NA, dim=fx) > prob.sdec <- array(NA, dim=fx) > prob.ldec <- array(NA, dim=fx) > prob.pval <- array(NA, dim=fx) > perf.pe <- array(0, dim=fx) > perf.mape <- array(0, dim=fx) > perf.se <- array(0, dim=fx) > perf.mse <- array(0, dim=fx) > perf.rmse <- array(0, dim=fx) > for (i in 1:fx) { + locSD <- (ub[i] - forecast$pred[i]) / 1.96 + perf.pe[i] = (x[nx+i] - forecast$pred[i]) / forecast$pred[i] + perf.mape[i] = perf.mape[i] + abs(perf.pe[i]) + perf.se[i] = (x[nx+i] - forecast$pred[i])^2 + perf.mse[i] = perf.mse[i] + perf.se[i] + prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD) + prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD) + prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD) + prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD) + } > perf.mape = perf.mape / fx > perf.mse = perf.mse / fx > perf.rmse = sqrt(perf.mse) > postscript(file="/var/www/html/rcomp/tmp/28ouq1197392573.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub))) > dum <- forecast$pred > dum[1:12] <- x[(nx+1):lx] > lines(dum, lty=1) > lines(ub,lty=3) > lines(lb,lty=3) > dev.off() null device 1 > load(file='/var/www/html/rcomp/createtable') > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'Y[t]',1,header=TRUE) > a<-table.element(a,'F[t]',1,header=TRUE) > a<-table.element(a,'95% LB',1,header=TRUE) > a<-table.element(a,'95% UB',1,header=TRUE) > a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE) > mylab <- paste('P(F[t]>Y[',nx,sep='') > mylab <- paste(mylab,'])',sep='') > a<-table.element(a,mylab,1,header=TRUE) > a<-table.row.end(a) > for (i in (nx-par5):nx) { + a<-table.row.start(a) + a<-table.element(a,i,header=TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.row.end(a) + } > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(x[nx+i],4)) + a<-table.element(a,round(forecast$pred[i],4)) + a<-table.element(a,round(lb[i],4)) + a<-table.element(a,round(ub[i],4)) + a<-table.element(a,round((1-prob.pval[i]),4)) + a<-table.element(a,round((1-prob.dec[i]),4)) + a<-table.element(a,round((1-prob.sdec[i]),4)) + a<-table.element(a,round((1-prob.ldec[i]),4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/39eng1197392573.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',7,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'% S.E.',1,header=TRUE) > a<-table.element(a,'PE',1,header=TRUE) > a<-table.element(a,'MAPE',1,header=TRUE) > a<-table.element(a,'Sq.E',1,header=TRUE) > a<-table.element(a,'MSE',1,header=TRUE) > a<-table.element(a,'RMSE',1,header=TRUE) > a<-table.row.end(a) > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(perc.se[i],4)) + a<-table.element(a,round(perf.pe[i],4)) + a<-table.element(a,round(perf.mape[i],4)) + a<-table.element(a,round(perf.se[i],4)) + a<-table.element(a,round(perf.mse[i],4)) + a<-table.element(a,round(perf.rmse[i],4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/4nd3x1197392573.tab") > > system("convert tmp/15bkn1197392572.ps tmp/15bkn1197392572.png") > system("convert tmp/28ouq1197392573.ps tmp/28ouq1197392573.png") > > > proc.time() user system elapsed 0.969 0.331 1.213