R version 2.6.0 (2007-10-03) Copyright (C) 2007 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- c(467.037,460.070,447.988,442.867,436.087,431.328,484.015,509.673,512.927,502.831,470.984,471.067,476.049,474.605,470.439,461.251,454.724,455.626,516.847,525.192,522.975,518.585,509.239,512.238,519.164,517.009,509.933,509.127,500.857,506.971,569.323,579.714,577.992,565.464,547.344,554.788,562.325,560.854,555.332,543.599,536.662,542.722,593.530,610.763,612.613,611.324,594.167,595.454,590.865,589.379,584.428,573.100,567.456,569.028,620.735,628.884,628.232,612.117,595.404,597.141,593.408,590.072,579.799,574.205,572.775,572.942,619.567,625.809,619.916,587.625,565.742,557.274) > par10 = 'FALSE' > par9 = '0' > par8 = '2' > par7 = '0' > par6 = '0' > par5 = '12' > par4 = '1' > par3 = '1' > par2 = '1.8' > par1 = '12' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: AUTHOR(S), (YEAR), YOUR SOFTWARE TITLE (vNUMBER) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_YOURPAGE.wasp/ > #Source of accompanying publication: Office for Research, Development, and Education > #Technical description: Write here your technical program description (don't use hard returns!) > par1 <- as.numeric(par1) #cut off periods > par2 <- as.numeric(par2) #lambda > par3 <- as.numeric(par3) #degree of non-seasonal differencing > par4 <- as.numeric(par4) #degree of seasonal differencing > par5 <- as.numeric(par5) #seasonal period > par6 <- as.numeric(par6) #p > par7 <- as.numeric(par7) #q > par8 <- as.numeric(par8) #P > par9 <- as.numeric(par9) #Q > if (par10 == 'TRUE') par10 <- TRUE > if (par10 == 'FALSE') par10 <- FALSE > if (par2 == 0) x <- log(x) > if (par2 != 0) x <- x^par2 > lx <- length(x) > first <- lx - 2*par1 > nx <- lx - par1 > nx1 <- nx + 1 > fx <- lx - nx > if (fx < 1) { + fx <- par5 + nx1 <- lx + fx - 1 + first <- lx - 2*fx + } > first <- 1 > if (fx < 3) fx <- round(lx/10,0) > (arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML')) Call: arima(x = x[1:nx], order = c(par6, par3, par7), seasonal = list(order = c(par8, par4, par9), period = par5), include.mean = par10, method = "ML") Coefficients: sar1 sar2 -0.9383 -0.5161 s.e. 0.1737 0.1506 sigma^2 estimated as 1897297: log likelihood = -413.02, aic = 832.04 > (forecast <- predict(arima.out,fx)) $pred Time Series: Start = 61 End = 72 Frequency = 1 [1] 101067.50 100566.18 98846.19 97145.27 95118.57 96677.27 112661.02 [8] 116565.66 116531.94 114189.75 109048.65 110321.23 $se Time Series: Start = 61 End = 72 Frequency = 1 [1] 1377.424 1947.972 2385.769 2754.848 3080.014 3373.986 3644.322 3895.944 [9] 4132.272 4355.797 4568.399 4771.537 > (lb <- forecast$pred - 1.96 * forecast$se) Time Series: Start = 61 End = 72 Frequency = 1 [1] 98367.75 96748.16 94170.08 91745.77 89081.75 90064.25 105518.15 [8] 108929.61 108432.68 105652.39 100094.59 100969.02 > (ub <- forecast$pred + 1.96 * forecast$se) Time Series: Start = 61 End = 72 Frequency = 1 [1] 103767.3 104384.2 103522.3 102544.8 101155.4 103290.3 119803.9 124201.7 [9] 124631.2 122727.1 118002.7 119673.4 > if (par2 == 0) { + x <- exp(x) + forecast$pred <- exp(forecast$pred) + lb <- exp(lb) + ub <- exp(ub) + } > if (par2 != 0) { + x <- x^(1/par2) + forecast$pred <- forecast$pred^(1/par2) + lb <- lb^(1/par2) + ub <- ub^(1/par2) + } > (actandfor <- c(x[1:nx], forecast$pred)) [1] 467.0370 460.0700 447.9880 442.8670 436.0870 431.3280 484.0150 509.6730 [9] 512.9270 502.8310 470.9840 471.0670 476.0490 474.6050 470.4390 461.2510 [17] 454.7240 455.6260 516.8470 525.1920 522.9750 518.5850 509.2390 512.2380 [25] 519.1640 517.0090 509.9330 509.1270 500.8570 506.9710 569.3230 579.7140 [33] 577.9920 565.4640 547.3440 554.7880 562.3250 560.8540 555.3320 543.5990 [41] 536.6620 542.7220 593.5300 610.7630 612.6130 611.3240 594.1670 595.4540 [49] 590.8650 589.3790 584.4280 573.1000 567.4560 569.0280 620.7350 628.8840 [57] 628.2320 612.1170 595.4040 597.1410 603.0312 601.3675 595.6316 589.9155 [65] 583.0462 588.3349 640.5321 652.7719 652.6670 645.3463 629.0395 633.1072 > (perc.se <- (ub-forecast$pred)/1.96/forecast$pred) Time Series: Start = 61 End = 72 Frequency = 1 [1] 0.007527153 0.010671971 0.013271141 0.015564905 0.017743074 0.019103198 [7] 0.017725175 0.018306082 0.019405737 0.020851844 0.022865325 0.023593415 > postscript(file="/var/www/html/rcomp/tmp/17jes1197413575.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mar=c(4,4,2,2),las=1) > ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub)) > plot(x,ylim=ylim,type='n',xlim=c(first,lx)) > usr <- par('usr') > rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon') > rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender') > abline(h= (-3:3)*2 , col ='gray', lty =3) > polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA) > lines(nx1:lx, lb , lty=2) > lines(nx1:lx, ub , lty=2) > lines(x, lwd=2) > lines(nx1:lx, forecast$pred , lwd=2 , col ='white') > box() > par(opar) > dev.off() null device 1 > prob.dec <- array(NA, dim=fx) > prob.sdec <- array(NA, dim=fx) > prob.ldec <- array(NA, dim=fx) > prob.pval <- array(NA, dim=fx) > perf.pe <- array(0, dim=fx) > perf.mape <- array(0, dim=fx) > perf.se <- array(0, dim=fx) > perf.mse <- array(0, dim=fx) > perf.rmse <- array(0, dim=fx) > for (i in 1:fx) { + locSD <- (ub[i] - forecast$pred[i]) / 1.96 + perf.pe[i] = (x[nx+i] - forecast$pred[i]) / forecast$pred[i] + perf.mape[i] = perf.mape[i] + abs(perf.pe[i]) + perf.se[i] = (x[nx+i] - forecast$pred[i])^2 + perf.mse[i] = perf.mse[i] + perf.se[i] + prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD) + prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD) + prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD) + prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD) + } > perf.mape = perf.mape / fx > perf.mse = perf.mse / fx > perf.rmse = sqrt(perf.mse) > postscript(file="/var/www/html/rcomp/tmp/2jvu81197413575.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub))) > dum <- forecast$pred > dum[1:12] <- x[(nx+1):lx] > lines(dum, lty=1) > lines(ub,lty=3) > lines(lb,lty=3) > dev.off() null device 1 > load(file='/var/www/html/rcomp/createtable') > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'Y[t]',1,header=TRUE) > a<-table.element(a,'F[t]',1,header=TRUE) > a<-table.element(a,'95% LB',1,header=TRUE) > a<-table.element(a,'95% UB',1,header=TRUE) > a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE) > mylab <- paste('P(F[t]>Y[',nx,sep='') > mylab <- paste(mylab,'])',sep='') > a<-table.element(a,mylab,1,header=TRUE) > a<-table.row.end(a) > for (i in (nx-par5):nx) { + a<-table.row.start(a) + a<-table.element(a,i,header=TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.row.end(a) + } > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(x[nx+i],4)) + a<-table.element(a,round(forecast$pred[i],4)) + a<-table.element(a,round(lb[i],4)) + a<-table.element(a,round(ub[i],4)) + a<-table.element(a,round((1-prob.pval[i]),4)) + a<-table.element(a,round((1-prob.dec[i]),4)) + a<-table.element(a,round((1-prob.sdec[i]),4)) + a<-table.element(a,round((1-prob.ldec[i]),4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/3nhcd1197413575.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',7,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'% S.E.',1,header=TRUE) > a<-table.element(a,'PE',1,header=TRUE) > a<-table.element(a,'MAPE',1,header=TRUE) > a<-table.element(a,'Sq.E',1,header=TRUE) > a<-table.element(a,'MSE',1,header=TRUE) > a<-table.element(a,'RMSE',1,header=TRUE) > a<-table.row.end(a) > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(perc.se[i],4)) + a<-table.element(a,round(perf.pe[i],4)) + a<-table.element(a,round(perf.mape[i],4)) + a<-table.element(a,round(perf.se[i],4)) + a<-table.element(a,round(perf.mse[i],4)) + a<-table.element(a,round(perf.rmse[i],4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/4wdgx1197413575.tab") > > system("convert tmp/17jes1197413575.ps tmp/17jes1197413575.png") > system("convert tmp/2jvu81197413575.ps tmp/2jvu81197413575.png") > > > proc.time() user system elapsed 0.994 0.322 1.179