R version 2.6.0 (2007-10-03) Copyright (C) 2007 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- array(list(8.1,8.3,8.2,8.1,7.7,7.6,7.7,8.2,8.4,8.4,8.6,8.4,8.5,8.7,8.7,8.6,7.4,7.3,7.4,9,9.2,9.2,8.5,8.3,8.3,8.6,8.6,8.5,8.1,8.1,8,8.6,8.7,8.7,8.6,8.4,8.4,8.7,8.7,8.5,8.3,8.3,8.3,8.1,8.2,8.1,8.1,7.9,7.7,8.1,8,7.7,7.8,7.6,7.4,7.7,7.8,7.5,7.2,7),dim=c(1,60),dimnames=list(c('Werkl'),1:60)) > y <- array(NA,dim=c(1,60),dimnames=list(c('Werkl'),1:60)) > for (i in 1:dim(x)[1]) + { + for (j in 1:dim(x)[2]) + { + y[i,j] <- as.numeric(x[i,j]) + } + } > par3 = 'Linear Trend' > par2 = 'Do not include Seasonal Dummies' > par1 = '1' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: AUTHOR(S), (YEAR), YOUR SOFTWARE TITLE (vNUMBER) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_YOURPAGE.wasp/ > #Source of accompanying publication: Office for Research, Development, and Education > #Technical description: Write here your technical program description (don't use hard returns!) > library(lattice) > par1 <- as.numeric(par1) > x <- t(y) > k <- length(x[1,]) > n <- length(x[,1]) > x1 <- cbind(x[,par1], x[,1:k!=par1]) > mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1]) > colnames(x1) <- mycolnames #colnames(x)[par1] > x <- x1 > if (par3 == 'First Differences'){ + x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep=''))) + for (i in 1:n-1) { + for (j in 1:k) { + x2[i,j] <- x[i+1,j] - x[i,j] + } + } + x <- x2 + } > if (par2 == 'Include Monthly Dummies'){ + x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep =''))) + for (i in 1:11){ + x2[seq(i,n,12),i] <- 1 + } + x <- cbind(x, x2) + } > if (par2 == 'Include Quarterly Dummies'){ + x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep =''))) + for (i in 1:3){ + x2[seq(i,n,4),i] <- 1 + } + x <- cbind(x, x2) + } > k <- length(x[1,]) > if (par3 == 'Linear Trend'){ + x <- cbind(x, c(1:n)) + colnames(x)[k+1] <- 't' + } > x Werkl t 1 8.1 1 2 8.3 2 3 8.2 3 4 8.1 4 5 7.7 5 6 7.6 6 7 7.7 7 8 8.2 8 9 8.4 9 10 8.4 10 11 8.6 11 12 8.4 12 13 8.5 13 14 8.7 14 15 8.7 15 16 8.6 16 17 7.4 17 18 7.3 18 19 7.4 19 20 9.0 20 21 9.2 21 22 9.2 22 23 8.5 23 24 8.3 24 25 8.3 25 26 8.6 26 27 8.6 27 28 8.5 28 29 8.1 29 30 8.1 30 31 8.0 31 32 8.6 32 33 8.7 33 34 8.7 34 35 8.6 35 36 8.4 36 37 8.4 37 38 8.7 38 39 8.7 39 40 8.5 40 41 8.3 41 42 8.3 42 43 8.3 43 44 8.1 44 45 8.2 45 46 8.1 46 47 8.1 47 48 7.9 48 49 7.7 49 50 8.1 50 51 8.0 51 52 7.7 52 53 7.8 53 54 7.6 54 55 7.4 55 56 7.7 56 57 7.8 57 58 7.5 58 59 7.2 59 60 7.0 60 > k <- length(x[1,]) > df <- as.data.frame(x) > (mylm <- lm(df)) Call: lm(formula = df) Coefficients: (Intercept) t 8.46881 -0.00947 > (mysum <- summary(mylm)) Call: lm(formula = df) Residuals: Min 1Q Median 3Q Max -0.99837 -0.24941 0.05314 0.28610 0.93951 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 8.468814 0.120319 70.39 < 2e-16 *** t -0.009469 0.003430 -2.76 0.00772 ** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 0.4602 on 58 degrees of freedom Multiple R-Squared: 0.1161, Adjusted R-squared: 0.1009 F-statistic: 7.62 on 1 and 58 DF, p-value: 0.007716 > postscript(file="/var/www/html/rcomp/tmp/1exz31198242892.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index') > points(x[,1]-mysum$resid) > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/2lhh91198242892.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index') > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/36pzz1198242892.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals') > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/45hta1198242892.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals') > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/58ypg1198242892.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > qqnorm(mysum$resid, main='Residual Normal Q-Q Plot') > grid() > dev.off() null device 1 > (myerror <- as.ts(mysum$resid)) Time Series: Start = 1 End = 60 Frequency = 1 1 2 3 4 5 6 -0.35934426 -0.14987497 -0.24040567 -0.33093637 -0.72146707 -0.81199778 7 8 9 10 11 12 -0.70252848 -0.19305918 0.01641011 0.02587941 0.23534871 0.04481801 13 14 15 16 17 18 0.15428730 0.36375660 0.37322590 0.28269519 -0.90783551 -0.99836621 19 20 21 22 23 24 -0.88889692 0.72057238 0.93004168 0.93951098 0.24898027 0.05844957 25 26 27 28 29 30 0.06791887 0.37738816 0.38685746 0.29632676 -0.09420395 -0.08473465 31 32 33 34 35 36 -0.17526535 0.43420395 0.54367324 0.55314254 0.46261184 0.27208113 37 38 39 40 41 42 0.28155043 0.59101973 0.60048902 0.40995832 0.21942762 0.22889692 43 44 45 46 47 48 0.23836621 0.04783551 0.15730481 0.06677410 0.07624340 -0.11428730 49 50 51 52 53 54 -0.30481801 0.10465129 0.01412059 -0.27641011 -0.16694082 -0.35747152 55 56 57 58 59 60 -0.54800222 -0.23853293 -0.12906363 -0.41959433 -0.71012503 -0.90065574 > postscript(file="/var/www/html/rcomp/tmp/6fdl11198242892.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > dum <- cbind(lag(myerror,k=1),myerror) > dum Time Series: Start = 0 End = 60 Frequency = 1 lag(myerror, k = 1) myerror 0 -0.35934426 NA 1 -0.14987497 -0.35934426 2 -0.24040567 -0.14987497 3 -0.33093637 -0.24040567 4 -0.72146707 -0.33093637 5 -0.81199778 -0.72146707 6 -0.70252848 -0.81199778 7 -0.19305918 -0.70252848 8 0.01641011 -0.19305918 9 0.02587941 0.01641011 10 0.23534871 0.02587941 11 0.04481801 0.23534871 12 0.15428730 0.04481801 13 0.36375660 0.15428730 14 0.37322590 0.36375660 15 0.28269519 0.37322590 16 -0.90783551 0.28269519 17 -0.99836621 -0.90783551 18 -0.88889692 -0.99836621 19 0.72057238 -0.88889692 20 0.93004168 0.72057238 21 0.93951098 0.93004168 22 0.24898027 0.93951098 23 0.05844957 0.24898027 24 0.06791887 0.05844957 25 0.37738816 0.06791887 26 0.38685746 0.37738816 27 0.29632676 0.38685746 28 -0.09420395 0.29632676 29 -0.08473465 -0.09420395 30 -0.17526535 -0.08473465 31 0.43420395 -0.17526535 32 0.54367324 0.43420395 33 0.55314254 0.54367324 34 0.46261184 0.55314254 35 0.27208113 0.46261184 36 0.28155043 0.27208113 37 0.59101973 0.28155043 38 0.60048902 0.59101973 39 0.40995832 0.60048902 40 0.21942762 0.40995832 41 0.22889692 0.21942762 42 0.23836621 0.22889692 43 0.04783551 0.23836621 44 0.15730481 0.04783551 45 0.06677410 0.15730481 46 0.07624340 0.06677410 47 -0.11428730 0.07624340 48 -0.30481801 -0.11428730 49 0.10465129 -0.30481801 50 0.01412059 0.10465129 51 -0.27641011 0.01412059 52 -0.16694082 -0.27641011 53 -0.35747152 -0.16694082 54 -0.54800222 -0.35747152 55 -0.23853293 -0.54800222 56 -0.12906363 -0.23853293 57 -0.41959433 -0.12906363 58 -0.71012503 -0.41959433 59 -0.90065574 -0.71012503 60 NA -0.90065574 > dum1 <- dum[2:length(myerror),] > dum1 lag(myerror, k = 1) myerror [1,] -0.14987497 -0.35934426 [2,] -0.24040567 -0.14987497 [3,] -0.33093637 -0.24040567 [4,] -0.72146707 -0.33093637 [5,] -0.81199778 -0.72146707 [6,] -0.70252848 -0.81199778 [7,] -0.19305918 -0.70252848 [8,] 0.01641011 -0.19305918 [9,] 0.02587941 0.01641011 [10,] 0.23534871 0.02587941 [11,] 0.04481801 0.23534871 [12,] 0.15428730 0.04481801 [13,] 0.36375660 0.15428730 [14,] 0.37322590 0.36375660 [15,] 0.28269519 0.37322590 [16,] -0.90783551 0.28269519 [17,] -0.99836621 -0.90783551 [18,] -0.88889692 -0.99836621 [19,] 0.72057238 -0.88889692 [20,] 0.93004168 0.72057238 [21,] 0.93951098 0.93004168 [22,] 0.24898027 0.93951098 [23,] 0.05844957 0.24898027 [24,] 0.06791887 0.05844957 [25,] 0.37738816 0.06791887 [26,] 0.38685746 0.37738816 [27,] 0.29632676 0.38685746 [28,] -0.09420395 0.29632676 [29,] -0.08473465 -0.09420395 [30,] -0.17526535 -0.08473465 [31,] 0.43420395 -0.17526535 [32,] 0.54367324 0.43420395 [33,] 0.55314254 0.54367324 [34,] 0.46261184 0.55314254 [35,] 0.27208113 0.46261184 [36,] 0.28155043 0.27208113 [37,] 0.59101973 0.28155043 [38,] 0.60048902 0.59101973 [39,] 0.40995832 0.60048902 [40,] 0.21942762 0.40995832 [41,] 0.22889692 0.21942762 [42,] 0.23836621 0.22889692 [43,] 0.04783551 0.23836621 [44,] 0.15730481 0.04783551 [45,] 0.06677410 0.15730481 [46,] 0.07624340 0.06677410 [47,] -0.11428730 0.07624340 [48,] -0.30481801 -0.11428730 [49,] 0.10465129 -0.30481801 [50,] 0.01412059 0.10465129 [51,] -0.27641011 0.01412059 [52,] -0.16694082 -0.27641011 [53,] -0.35747152 -0.16694082 [54,] -0.54800222 -0.35747152 [55,] -0.23853293 -0.54800222 [56,] -0.12906363 -0.23853293 [57,] -0.41959433 -0.12906363 [58,] -0.71012503 -0.41959433 [59,] -0.90065574 -0.71012503 > z <- as.data.frame(dum1) > z lag(myerror, k = 1) myerror 1 -0.14987497 -0.35934426 2 -0.24040567 -0.14987497 3 -0.33093637 -0.24040567 4 -0.72146707 -0.33093637 5 -0.81199778 -0.72146707 6 -0.70252848 -0.81199778 7 -0.19305918 -0.70252848 8 0.01641011 -0.19305918 9 0.02587941 0.01641011 10 0.23534871 0.02587941 11 0.04481801 0.23534871 12 0.15428730 0.04481801 13 0.36375660 0.15428730 14 0.37322590 0.36375660 15 0.28269519 0.37322590 16 -0.90783551 0.28269519 17 -0.99836621 -0.90783551 18 -0.88889692 -0.99836621 19 0.72057238 -0.88889692 20 0.93004168 0.72057238 21 0.93951098 0.93004168 22 0.24898027 0.93951098 23 0.05844957 0.24898027 24 0.06791887 0.05844957 25 0.37738816 0.06791887 26 0.38685746 0.37738816 27 0.29632676 0.38685746 28 -0.09420395 0.29632676 29 -0.08473465 -0.09420395 30 -0.17526535 -0.08473465 31 0.43420395 -0.17526535 32 0.54367324 0.43420395 33 0.55314254 0.54367324 34 0.46261184 0.55314254 35 0.27208113 0.46261184 36 0.28155043 0.27208113 37 0.59101973 0.28155043 38 0.60048902 0.59101973 39 0.40995832 0.60048902 40 0.21942762 0.40995832 41 0.22889692 0.21942762 42 0.23836621 0.22889692 43 0.04783551 0.23836621 44 0.15730481 0.04783551 45 0.06677410 0.15730481 46 0.07624340 0.06677410 47 -0.11428730 0.07624340 48 -0.30481801 -0.11428730 49 0.10465129 -0.30481801 50 0.01412059 0.10465129 51 -0.27641011 0.01412059 52 -0.16694082 -0.27641011 53 -0.35747152 -0.16694082 54 -0.54800222 -0.35747152 55 -0.23853293 -0.54800222 56 -0.12906363 -0.23853293 57 -0.41959433 -0.12906363 58 -0.71012503 -0.41959433 59 -0.90065574 -0.71012503 > plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals') > lines(lowess(z)) > abline(lm(z)) > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/7xu8v1198242892.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function') > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/8jpo21198242892.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function') > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/93r0f1198242892.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0)) > plot(mylm, las = 1, sub='Residual Diagnostics') > par(opar) > dev.off() null device 1 > load(file='/var/www/html/rcomp/createtable') > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE) > a<-table.row.end(a) > myeq <- colnames(x)[1] > myeq <- paste(myeq, '[t] = ', sep='') > for (i in 1:k){ + if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '') + myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ') + if (rownames(mysum$coefficients)[i] != '(Intercept)') { + myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='') + if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='') + } + } > myeq <- paste(myeq, ' + e[t]') > a<-table.row.start(a) > a<-table.element(a, myeq) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/10xh9s1198242893.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Variable',header=TRUE) > a<-table.element(a,'Parameter',header=TRUE) > a<-table.element(a,'S.D.',header=TRUE) > a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE) > a<-table.element(a,'2-tail p-value',header=TRUE) > a<-table.element(a,'1-tail p-value',header=TRUE) > a<-table.row.end(a) > for (i in 1:k){ + a<-table.row.start(a) + a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE) + a<-table.element(a,mysum$coefficients[i,1]) + a<-table.element(a, round(mysum$coefficients[i,2],6)) + a<-table.element(a, round(mysum$coefficients[i,3],4)) + a<-table.element(a, round(mysum$coefficients[i,4],6)) + a<-table.element(a, round(mysum$coefficients[i,4]/2,6)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/110rt21198242893.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Multiple R',1,TRUE) > a<-table.element(a, sqrt(mysum$r.squared)) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'R-squared',1,TRUE) > a<-table.element(a, mysum$r.squared) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Adjusted R-squared',1,TRUE) > a<-table.element(a, mysum$adj.r.squared) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (value)',1,TRUE) > a<-table.element(a, mysum$fstatistic[1]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE) > a<-table.element(a, mysum$fstatistic[2]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE) > a<-table.element(a, mysum$fstatistic[3]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'p-value',1,TRUE) > a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3])) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Residual Standard Deviation',1,TRUE) > a<-table.element(a, mysum$sigma) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Sum Squared Residuals',1,TRUE) > a<-table.element(a, sum(myerror*myerror)) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/12dy0m1198242893.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Time or Index', 1, TRUE) > a<-table.element(a, 'Actuals', 1, TRUE) > a<-table.element(a, 'Interpolation
Forecast', 1, TRUE) > a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE) > a<-table.row.end(a) > for (i in 1:n) { + a<-table.row.start(a) + a<-table.element(a,i, 1, TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,x[i]-mysum$resid[i]) + a<-table.element(a,mysum$resid[i]) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/13egqa1198242893.tab") > > system("convert tmp/1exz31198242892.ps tmp/1exz31198242892.png") > system("convert tmp/2lhh91198242892.ps tmp/2lhh91198242892.png") > system("convert tmp/36pzz1198242892.ps tmp/36pzz1198242892.png") > system("convert tmp/45hta1198242892.ps tmp/45hta1198242892.png") > system("convert tmp/58ypg1198242892.ps tmp/58ypg1198242892.png") > system("convert tmp/6fdl11198242892.ps tmp/6fdl11198242892.png") > system("convert tmp/7xu8v1198242892.ps tmp/7xu8v1198242892.png") > system("convert tmp/8jpo21198242892.ps tmp/8jpo21198242892.png") > system("convert tmp/93r0f1198242892.ps tmp/93r0f1198242892.png") > > > proc.time() user system elapsed 2.214 1.446 2.558