R version 2.6.0 (2007-10-03) Copyright (C) 2007 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. Natural language support but running in an English locale R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- array(list(106.7,0,110.2,0,125.9,0,100.1,0,106.4,0,114.8,0,81.3,0,87,0,104.2,0,108,0,105,0,94.5,0,92,0,95.9,0,108.8,0,103.4,0,102.1,0,110.1,0,83.2,0,82.7,0,106.8,0,113.7,0,102.5,0,96.6,0,92.1,0,95.6,0,102.3,0,98.6,0,98.2,0,104.5,0,84,0,73.8,0,103.9,0,106,0,97.2,0,102.6,0,89,0,93.8,0,116.7,1,106.8,1,98.5,1,118.7,1,90,1,91.9,1,113.3,1,113.1,1,104.1,1,108.7,1,96.7,1,101,1,116.9,1,105.8,1,99,1,129.4,1,83,1,88.9,1,115.9,1,104.2,1,113.4,1,112.2,1,100.8,1,107.3,1,126.6,1,102.9,1,117.9,1,128.8,1,87.5,1,93.8,1,122.7,1,126.2,1,124.6,1,116.7,1,115.2,1,111.1,1,129.9,1,113.3,1,118.5,1,133.5,1,102.1,1,102.4,1),dim=c(2,80),dimnames=list(c('y','x'),1:80)) > y <- array(NA,dim=c(2,80),dimnames=list(c('y','x'),1:80)) > for (i in 1:dim(x)[1]) + { + for (j in 1:dim(x)[2]) + { + y[i,j] <- as.numeric(x[i,j]) + } + } > par3 = 'No Linear Trend' > par2 = 'Do not include Seasonal Dummies' > par1 = '1' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: AUTHOR(S), (YEAR), YOUR SOFTWARE TITLE (vNUMBER) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_YOURPAGE.wasp/ > #Source of accompanying publication: Office for Research, Development, and Education > #Technical description: Write here your technical program description (don't use hard returns!) > library(lattice) > par1 <- as.numeric(par1) > x <- t(y) > k <- length(x[1,]) > n <- length(x[,1]) > x1 <- cbind(x[,par1], x[,1:k!=par1]) > mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1]) > colnames(x1) <- mycolnames #colnames(x)[par1] > x <- x1 > if (par3 == 'First Differences'){ + x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep=''))) + for (i in 1:n-1) { + for (j in 1:k) { + x2[i,j] <- x[i+1,j] - x[i,j] + } + } + x <- x2 + } > if (par2 == 'Include Monthly Dummies'){ + x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep =''))) + for (i in 1:11){ + x2[seq(i,n,12),i] <- 1 + } + x <- cbind(x, x2) + } > if (par2 == 'Include Quarterly Dummies'){ + x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep =''))) + for (i in 1:3){ + x2[seq(i,n,4),i] <- 1 + } + x <- cbind(x, x2) + } > k <- length(x[1,]) > if (par3 == 'Linear Trend'){ + x <- cbind(x, c(1:n)) + colnames(x)[k+1] <- 't' + } > x y x 1 106.7 0 2 110.2 0 3 125.9 0 4 100.1 0 5 106.4 0 6 114.8 0 7 81.3 0 8 87.0 0 9 104.2 0 10 108.0 0 11 105.0 0 12 94.5 0 13 92.0 0 14 95.9 0 15 108.8 0 16 103.4 0 17 102.1 0 18 110.1 0 19 83.2 0 20 82.7 0 21 106.8 0 22 113.7 0 23 102.5 0 24 96.6 0 25 92.1 0 26 95.6 0 27 102.3 0 28 98.6 0 29 98.2 0 30 104.5 0 31 84.0 0 32 73.8 0 33 103.9 0 34 106.0 0 35 97.2 0 36 102.6 0 37 89.0 0 38 93.8 0 39 116.7 1 40 106.8 1 41 98.5 1 42 118.7 1 43 90.0 1 44 91.9 1 45 113.3 1 46 113.1 1 47 104.1 1 48 108.7 1 49 96.7 1 50 101.0 1 51 116.9 1 52 105.8 1 53 99.0 1 54 129.4 1 55 83.0 1 56 88.9 1 57 115.9 1 58 104.2 1 59 113.4 1 60 112.2 1 61 100.8 1 62 107.3 1 63 126.6 1 64 102.9 1 65 117.9 1 66 128.8 1 67 87.5 1 68 93.8 1 69 122.7 1 70 126.2 1 71 124.6 1 72 116.7 1 73 115.2 1 74 111.1 1 75 129.9 1 76 113.3 1 77 118.5 1 78 133.5 1 79 102.1 1 80 102.4 1 > k <- length(x[1,]) > df <- as.data.frame(x) > (mylm <- lm(df)) Call: lm(formula = df) Coefficients: (Intercept) x 99.57 10.20 > (mysum <- summary(mylm)) Call: lm(formula = df) Residuals: Min 1Q Median 3Q Max -26.762 -7.491 2.486 7.135 26.334 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 99.566 1.901 52.387 < 2e-16 *** x 10.196 2.623 3.887 0.000212 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 11.72 on 78 degrees of freedom Multiple R-Squared: 0.1623, Adjusted R-squared: 0.1515 F-statistic: 15.11 on 1 and 78 DF, p-value: 0.0002117 > postscript(file="/var/www/html/rcomp/tmp/15s2a1195502121.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index') > points(x[,1]-mysum$resid) > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/2iruz1195502121.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index') > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/3427f1195502121.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals') > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/4motu1195502121.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals') > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/5rxgk1195502122.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > qqnorm(mysum$resid, main='Residual Normal Q-Q Plot') > grid() > dev.off() null device 1 > (myerror <- as.ts(mysum$resid)) Time Series: Start = 1 End = 80 Frequency = 1 1 2 3 4 5 6 7.1342105 10.6342105 26.3342105 0.5342105 6.8342105 15.2342105 7 8 9 10 11 12 -18.2657895 -12.5657895 4.6342105 8.4342105 5.4342105 -5.0657895 13 14 15 16 17 18 -7.5657895 -3.6657895 9.2342105 3.8342105 2.5342105 10.5342105 19 20 21 22 23 24 -16.3657895 -16.8657895 7.2342105 14.1342105 2.9342105 -2.9657895 25 26 27 28 29 30 -7.4657895 -3.9657895 2.7342105 -0.9657895 -1.3657895 4.9342105 31 32 33 34 35 36 -15.5657895 -25.7657895 4.3342105 6.4342105 -2.3657895 3.0342105 37 38 39 40 41 42 -10.5657895 -5.7657895 6.9380952 -2.9619048 -11.2619048 8.9380952 43 44 45 46 47 48 -19.7619048 -17.8619048 3.5380952 3.3380952 -5.6619048 -1.0619048 49 50 51 52 53 54 -13.0619048 -8.7619048 7.1380952 -3.9619048 -10.7619048 19.6380952 55 56 57 58 59 60 -26.7619048 -20.8619048 6.1380952 -5.5619048 3.6380952 2.4380952 61 62 63 64 65 66 -8.9619048 -2.4619048 16.8380952 -6.8619048 8.1380952 19.0380952 67 68 69 70 71 72 -22.2619048 -15.9619048 12.9380952 16.4380952 14.8380952 6.9380952 73 74 75 76 77 78 5.4380952 1.3380952 20.1380952 3.5380952 8.7380952 23.7380952 79 80 -7.6619048 -7.3619048 > postscript(file="/var/www/html/rcomp/tmp/6btgv1195502122.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > dum <- cbind(lag(myerror,k=1),myerror) > dum Time Series: Start = 0 End = 80 Frequency = 1 lag(myerror, k = 1) myerror 0 7.1342105 NA 1 10.6342105 7.1342105 2 26.3342105 10.6342105 3 0.5342105 26.3342105 4 6.8342105 0.5342105 5 15.2342105 6.8342105 6 -18.2657895 15.2342105 7 -12.5657895 -18.2657895 8 4.6342105 -12.5657895 9 8.4342105 4.6342105 10 5.4342105 8.4342105 11 -5.0657895 5.4342105 12 -7.5657895 -5.0657895 13 -3.6657895 -7.5657895 14 9.2342105 -3.6657895 15 3.8342105 9.2342105 16 2.5342105 3.8342105 17 10.5342105 2.5342105 18 -16.3657895 10.5342105 19 -16.8657895 -16.3657895 20 7.2342105 -16.8657895 21 14.1342105 7.2342105 22 2.9342105 14.1342105 23 -2.9657895 2.9342105 24 -7.4657895 -2.9657895 25 -3.9657895 -7.4657895 26 2.7342105 -3.9657895 27 -0.9657895 2.7342105 28 -1.3657895 -0.9657895 29 4.9342105 -1.3657895 30 -15.5657895 4.9342105 31 -25.7657895 -15.5657895 32 4.3342105 -25.7657895 33 6.4342105 4.3342105 34 -2.3657895 6.4342105 35 3.0342105 -2.3657895 36 -10.5657895 3.0342105 37 -5.7657895 -10.5657895 38 6.9380952 -5.7657895 39 -2.9619048 6.9380952 40 -11.2619048 -2.9619048 41 8.9380952 -11.2619048 42 -19.7619048 8.9380952 43 -17.8619048 -19.7619048 44 3.5380952 -17.8619048 45 3.3380952 3.5380952 46 -5.6619048 3.3380952 47 -1.0619048 -5.6619048 48 -13.0619048 -1.0619048 49 -8.7619048 -13.0619048 50 7.1380952 -8.7619048 51 -3.9619048 7.1380952 52 -10.7619048 -3.9619048 53 19.6380952 -10.7619048 54 -26.7619048 19.6380952 55 -20.8619048 -26.7619048 56 6.1380952 -20.8619048 57 -5.5619048 6.1380952 58 3.6380952 -5.5619048 59 2.4380952 3.6380952 60 -8.9619048 2.4380952 61 -2.4619048 -8.9619048 62 16.8380952 -2.4619048 63 -6.8619048 16.8380952 64 8.1380952 -6.8619048 65 19.0380952 8.1380952 66 -22.2619048 19.0380952 67 -15.9619048 -22.2619048 68 12.9380952 -15.9619048 69 16.4380952 12.9380952 70 14.8380952 16.4380952 71 6.9380952 14.8380952 72 5.4380952 6.9380952 73 1.3380952 5.4380952 74 20.1380952 1.3380952 75 3.5380952 20.1380952 76 8.7380952 3.5380952 77 23.7380952 8.7380952 78 -7.6619048 23.7380952 79 -7.3619048 -7.6619048 80 NA -7.3619048 > dum1 <- dum[2:length(myerror),] > dum1 lag(myerror, k = 1) myerror [1,] 10.6342105 7.1342105 [2,] 26.3342105 10.6342105 [3,] 0.5342105 26.3342105 [4,] 6.8342105 0.5342105 [5,] 15.2342105 6.8342105 [6,] -18.2657895 15.2342105 [7,] -12.5657895 -18.2657895 [8,] 4.6342105 -12.5657895 [9,] 8.4342105 4.6342105 [10,] 5.4342105 8.4342105 [11,] -5.0657895 5.4342105 [12,] -7.5657895 -5.0657895 [13,] -3.6657895 -7.5657895 [14,] 9.2342105 -3.6657895 [15,] 3.8342105 9.2342105 [16,] 2.5342105 3.8342105 [17,] 10.5342105 2.5342105 [18,] -16.3657895 10.5342105 [19,] -16.8657895 -16.3657895 [20,] 7.2342105 -16.8657895 [21,] 14.1342105 7.2342105 [22,] 2.9342105 14.1342105 [23,] -2.9657895 2.9342105 [24,] -7.4657895 -2.9657895 [25,] -3.9657895 -7.4657895 [26,] 2.7342105 -3.9657895 [27,] -0.9657895 2.7342105 [28,] -1.3657895 -0.9657895 [29,] 4.9342105 -1.3657895 [30,] -15.5657895 4.9342105 [31,] -25.7657895 -15.5657895 [32,] 4.3342105 -25.7657895 [33,] 6.4342105 4.3342105 [34,] -2.3657895 6.4342105 [35,] 3.0342105 -2.3657895 [36,] -10.5657895 3.0342105 [37,] -5.7657895 -10.5657895 [38,] 6.9380952 -5.7657895 [39,] -2.9619048 6.9380952 [40,] -11.2619048 -2.9619048 [41,] 8.9380952 -11.2619048 [42,] -19.7619048 8.9380952 [43,] -17.8619048 -19.7619048 [44,] 3.5380952 -17.8619048 [45,] 3.3380952 3.5380952 [46,] -5.6619048 3.3380952 [47,] -1.0619048 -5.6619048 [48,] -13.0619048 -1.0619048 [49,] -8.7619048 -13.0619048 [50,] 7.1380952 -8.7619048 [51,] -3.9619048 7.1380952 [52,] -10.7619048 -3.9619048 [53,] 19.6380952 -10.7619048 [54,] -26.7619048 19.6380952 [55,] -20.8619048 -26.7619048 [56,] 6.1380952 -20.8619048 [57,] -5.5619048 6.1380952 [58,] 3.6380952 -5.5619048 [59,] 2.4380952 3.6380952 [60,] -8.9619048 2.4380952 [61,] -2.4619048 -8.9619048 [62,] 16.8380952 -2.4619048 [63,] -6.8619048 16.8380952 [64,] 8.1380952 -6.8619048 [65,] 19.0380952 8.1380952 [66,] -22.2619048 19.0380952 [67,] -15.9619048 -22.2619048 [68,] 12.9380952 -15.9619048 [69,] 16.4380952 12.9380952 [70,] 14.8380952 16.4380952 [71,] 6.9380952 14.8380952 [72,] 5.4380952 6.9380952 [73,] 1.3380952 5.4380952 [74,] 20.1380952 1.3380952 [75,] 3.5380952 20.1380952 [76,] 8.7380952 3.5380952 [77,] 23.7380952 8.7380952 [78,] -7.6619048 23.7380952 [79,] -7.3619048 -7.6619048 > z <- as.data.frame(dum1) > z lag(myerror, k = 1) myerror 1 10.6342105 7.1342105 2 26.3342105 10.6342105 3 0.5342105 26.3342105 4 6.8342105 0.5342105 5 15.2342105 6.8342105 6 -18.2657895 15.2342105 7 -12.5657895 -18.2657895 8 4.6342105 -12.5657895 9 8.4342105 4.6342105 10 5.4342105 8.4342105 11 -5.0657895 5.4342105 12 -7.5657895 -5.0657895 13 -3.6657895 -7.5657895 14 9.2342105 -3.6657895 15 3.8342105 9.2342105 16 2.5342105 3.8342105 17 10.5342105 2.5342105 18 -16.3657895 10.5342105 19 -16.8657895 -16.3657895 20 7.2342105 -16.8657895 21 14.1342105 7.2342105 22 2.9342105 14.1342105 23 -2.9657895 2.9342105 24 -7.4657895 -2.9657895 25 -3.9657895 -7.4657895 26 2.7342105 -3.9657895 27 -0.9657895 2.7342105 28 -1.3657895 -0.9657895 29 4.9342105 -1.3657895 30 -15.5657895 4.9342105 31 -25.7657895 -15.5657895 32 4.3342105 -25.7657895 33 6.4342105 4.3342105 34 -2.3657895 6.4342105 35 3.0342105 -2.3657895 36 -10.5657895 3.0342105 37 -5.7657895 -10.5657895 38 6.9380952 -5.7657895 39 -2.9619048 6.9380952 40 -11.2619048 -2.9619048 41 8.9380952 -11.2619048 42 -19.7619048 8.9380952 43 -17.8619048 -19.7619048 44 3.5380952 -17.8619048 45 3.3380952 3.5380952 46 -5.6619048 3.3380952 47 -1.0619048 -5.6619048 48 -13.0619048 -1.0619048 49 -8.7619048 -13.0619048 50 7.1380952 -8.7619048 51 -3.9619048 7.1380952 52 -10.7619048 -3.9619048 53 19.6380952 -10.7619048 54 -26.7619048 19.6380952 55 -20.8619048 -26.7619048 56 6.1380952 -20.8619048 57 -5.5619048 6.1380952 58 3.6380952 -5.5619048 59 2.4380952 3.6380952 60 -8.9619048 2.4380952 61 -2.4619048 -8.9619048 62 16.8380952 -2.4619048 63 -6.8619048 16.8380952 64 8.1380952 -6.8619048 65 19.0380952 8.1380952 66 -22.2619048 19.0380952 67 -15.9619048 -22.2619048 68 12.9380952 -15.9619048 69 16.4380952 12.9380952 70 14.8380952 16.4380952 71 6.9380952 14.8380952 72 5.4380952 6.9380952 73 1.3380952 5.4380952 74 20.1380952 1.3380952 75 3.5380952 20.1380952 76 8.7380952 3.5380952 77 23.7380952 8.7380952 78 -7.6619048 23.7380952 79 -7.3619048 -7.6619048 > plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals') > lines(lowess(z)) > abline(lm(z)) > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/7b0za1195502122.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function') > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/80fma1195502122.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function') > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/9luaq1195502122.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0)) > plot(mylm, las = 1, sub='Residual Diagnostics') > par(opar) > dev.off() null device 1 > load(file='/var/www/html/rcomp/createtable') > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE) > a<-table.row.end(a) > myeq <- colnames(x)[1] > myeq <- paste(myeq, '[t] = ', sep='') > for (i in 1:k){ + if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '') + myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ') + if (rownames(mysum$coefficients)[i] != '(Intercept)') { + myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='') + if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='') + } + } > myeq <- paste(myeq, ' + e[t]') > a<-table.row.start(a) > a<-table.element(a, myeq) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/103l0x1195502122.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Variable',header=TRUE) > a<-table.element(a,'Parameter',header=TRUE) > a<-table.element(a,'S.D.',header=TRUE) > a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE) > a<-table.element(a,'2-tail p-value',header=TRUE) > a<-table.element(a,'1-tail p-value',header=TRUE) > a<-table.row.end(a) > for (i in 1:k){ + a<-table.row.start(a) + a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE) + a<-table.element(a,mysum$coefficients[i,1]) + a<-table.element(a, round(mysum$coefficients[i,2],6)) + a<-table.element(a, round(mysum$coefficients[i,3],4)) + a<-table.element(a, round(mysum$coefficients[i,4],6)) + a<-table.element(a, round(mysum$coefficients[i,4]/2,6)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/11xb9n1195502122.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Multiple R',1,TRUE) > a<-table.element(a, sqrt(mysum$r.squared)) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'R-squared',1,TRUE) > a<-table.element(a, mysum$r.squared) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Adjusted R-squared',1,TRUE) > a<-table.element(a, mysum$adj.r.squared) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (value)',1,TRUE) > a<-table.element(a, mysum$fstatistic[1]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE) > a<-table.element(a, mysum$fstatistic[2]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE) > a<-table.element(a, mysum$fstatistic[3]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'p-value',1,TRUE) > a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3])) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Residual Standard Deviation',1,TRUE) > a<-table.element(a, mysum$sigma) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Sum Squared Residuals',1,TRUE) > a<-table.element(a, sum(myerror*myerror)) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/12yq3z1195502122.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Time or Index', 1, TRUE) > a<-table.element(a, 'Actuals', 1, TRUE) > a<-table.element(a, 'Interpolation
Forecast', 1, TRUE) > a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE) > a<-table.row.end(a) > for (i in 1:n) { + a<-table.row.start(a) + a<-table.element(a,i, 1, TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,x[i]-mysum$resid[i]) + a<-table.element(a,mysum$resid[i]) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/13hlzx1195502123.tab") > > system("convert tmp/15s2a1195502121.ps tmp/15s2a1195502121.png") > system("convert tmp/2iruz1195502121.ps tmp/2iruz1195502121.png") > system("convert tmp/3427f1195502121.ps tmp/3427f1195502121.png") > system("convert tmp/4motu1195502121.ps tmp/4motu1195502121.png") > system("convert tmp/5rxgk1195502122.ps tmp/5rxgk1195502122.png") > system("convert tmp/6btgv1195502122.ps tmp/6btgv1195502122.png") > system("convert tmp/7b0za1195502122.ps tmp/7b0za1195502122.png") > system("convert tmp/80fma1195502122.ps tmp/80fma1195502122.png") > system("convert tmp/9luaq1195502122.ps tmp/9luaq1195502122.png") > > > proc.time() user system elapsed 4.205 2.467 4.552