R version 2.8.0 (2008-10-20) Copyright (C) 2008 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- array(list(1515,0,1510,0,1225,0,1577,0,1417,0,1224,0,1693,0,1633,0,1639,0,1914,0,1586,0,1552,0,2081,0,1500,0,1437,0,1470,0,1849,0,1387,0,1592,0,1589,0,1798,0,1935,0,1887,0,2027,0,2080,0,1556,0,1682,0,1785,0,1869,0,1781,0,2082,1,2570,1,1862,0,1936,0,1504,0,1765,0,1607,0,1577,0,1493,0,1615,0,1700,0,1335,0,1523,0,1623,0,1540,0,1637,0,1524,0,1419,0,1821,0,1593,0,1357,0,1263,0,1750,0,1405,0,1393,0,1639,0,1679,0,1551,0,1744,0,1429,0,1784,0),dim=c(2,61),dimnames=list(c('Gebouwen','Dummy'),1:61)) > y <- array(NA,dim=c(2,61),dimnames=list(c('Gebouwen','Dummy'),1:61)) > for (i in 1:dim(x)[1]) + { + for (j in 1:dim(x)[2]) + { + y[i,j] <- as.numeric(x[i,j]) + } + } > par3 = 'No Linear Trend' > par2 = 'Do not include Seasonal Dummies' > par1 = '1' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: AUTHOR(S), (YEAR), YOUR SOFTWARE TITLE (vNUMBER) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_YOURPAGE.wasp/ > #Source of accompanying publication: Office for Research, Development, and Education > #Technical description: Write here your technical program description (don't use hard returns!) > library(lattice) > library(lmtest) Loading required package: zoo Attaching package: 'zoo' The following object(s) are masked from package:base : as.Date.numeric > n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test > par1 <- as.numeric(par1) > x <- t(y) > k <- length(x[1,]) > n <- length(x[,1]) > x1 <- cbind(x[,par1], x[,1:k!=par1]) > mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1]) > colnames(x1) <- mycolnames #colnames(x)[par1] > x <- x1 > if (par3 == 'First Differences'){ + x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep=''))) + for (i in 1:n-1) { + for (j in 1:k) { + x2[i,j] <- x[i+1,j] - x[i,j] + } + } + x <- x2 + } > if (par2 == 'Include Monthly Dummies'){ + x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep =''))) + for (i in 1:11){ + x2[seq(i,n,12),i] <- 1 + } + x <- cbind(x, x2) + } > if (par2 == 'Include Quarterly Dummies'){ + x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep =''))) + for (i in 1:3){ + x2[seq(i,n,4),i] <- 1 + } + x <- cbind(x, x2) + } > k <- length(x[1,]) > if (par3 == 'Linear Trend'){ + x <- cbind(x, c(1:n)) + colnames(x)[k+1] <- 't' + } > x Gebouwen Dummy 1 1515 0 2 1510 0 3 1225 0 4 1577 0 5 1417 0 6 1224 0 7 1693 0 8 1633 0 9 1639 0 10 1914 0 11 1586 0 12 1552 0 13 2081 0 14 1500 0 15 1437 0 16 1470 0 17 1849 0 18 1387 0 19 1592 0 20 1589 0 21 1798 0 22 1935 0 23 1887 0 24 2027 0 25 2080 0 26 1556 0 27 1682 0 28 1785 0 29 1869 0 30 1781 0 31 2082 1 32 2570 1 33 1862 0 34 1936 0 35 1504 0 36 1765 0 37 1607 0 38 1577 0 39 1493 0 40 1615 0 41 1700 0 42 1335 0 43 1523 0 44 1623 0 45 1540 0 46 1637 0 47 1524 0 48 1419 0 49 1821 0 50 1593 0 51 1357 0 52 1263 0 53 1750 0 54 1405 0 55 1393 0 56 1639 0 57 1679 0 58 1551 0 59 1744 0 60 1429 0 61 1784 0 > k <- length(x[1,]) > df <- as.data.frame(x) > (mylm <- lm(df)) Call: lm(formula = df) Coefficients: (Intercept) Dummy 1624.7 701.3 > (mysum <- summary(mylm)) Call: lm(formula = df) Residuals: Min 1Q Median 3Q Max -400.71 -124.71 -31.71 156.29 456.29 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 1624.71 26.76 60.711 < 2e-16 *** Dummy 701.29 147.79 4.745 1.37e-05 *** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 205.6 on 59 degrees of freedom Multiple R-squared: 0.2762, Adjusted R-squared: 0.2639 F-statistic: 22.52 on 1 and 59 DF, p-value: 1.366e-05 > if (n > n25) { + kp3 <- k + 3 + nmkm3 <- n - k - 3 + gqarr <- array(NA, dim=c(nmkm3-kp3+1,3)) + numgqtests <- 0 + numsignificant1 <- 0 + numsignificant5 <- 0 + numsignificant10 <- 0 + for (mypoint in kp3:nmkm3) { + j <- 0 + numgqtests <- numgqtests + 1 + for (myalt in c('greater', 'two.sided', 'less')) { + j <- j + 1 + gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value + } + if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1 + if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1 + if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1 + } + gqarr + } [,1] [,2] [,3] [1,] 0.3858791 0.77175822 0.61412089 [2,] 0.4398032 0.87960645 0.56019677 [3,] 0.5330778 0.93384439 0.46692220 [4,] 0.4848481 0.96969615 0.51515192 [5,] 0.4279851 0.85597017 0.57201492 [6,] 0.6939278 0.61214445 0.30607222 [7,] 0.6002670 0.79946598 0.39973299 [8,] 0.5017846 0.99643070 0.49821535 [9,] 0.8585717 0.28285659 0.14142829 [10,] 0.8130575 0.37388507 0.18694253 [11,] 0.7825720 0.43485602 0.21742801 [12,] 0.7366384 0.52672325 0.26336162 [13,] 0.7668823 0.46623549 0.23311775 [14,] 0.7657183 0.46856344 0.23428172 [15,] 0.7001153 0.59976944 0.29988472 [16,] 0.6283115 0.74337697 0.37168849 [17,] 0.6207462 0.75850753 0.37925376 [18,] 0.7187484 0.56250328 0.28125164 [19,] 0.7570200 0.48596002 0.24298001 [20,] 0.8838476 0.23230478 0.11615239 [21,] 0.9704029 0.05919428 0.02959714 [22,] 0.9570163 0.08596731 0.04298365 [23,] 0.9384836 0.12303274 0.06151637 [24,] 0.9291000 0.14179995 0.07089997 [25,] 0.9405095 0.11898104 0.05949052 [26,] 0.9327700 0.13445999 0.06723000 [27,] 0.9530196 0.09396071 0.04698035 [28,] 0.9530329 0.09393415 0.04696707 [29,] 0.9646670 0.07066598 0.03533299 [30,] 0.9871856 0.02562876 0.01281438 [31,] 0.9816301 0.03673987 0.01836993 [32,] 0.9811599 0.03768022 0.01884011 [33,] 0.9707339 0.05853225 0.02926613 [34,] 0.9554510 0.08909809 0.04454904 [35,] 0.9395955 0.12080910 0.06040455 [36,] 0.9130371 0.17392589 0.08696295 [37,] 0.8938496 0.21230090 0.10615045 [38,] 0.9176532 0.16469359 0.08234680 [39,] 0.8841191 0.23176184 0.11588092 [40,] 0.8391286 0.32174280 0.16087140 [41,] 0.7817314 0.43653714 0.21826857 [42,] 0.7173786 0.56524279 0.28262140 [43,] 0.6401003 0.71979935 0.35989968 [44,] 0.6057057 0.78858863 0.39429431 [45,] 0.6564237 0.68715261 0.34357630 [46,] 0.5602905 0.87941896 0.43970948 [47,] 0.5656754 0.86864912 0.43432456 [48,] 0.7400268 0.51994631 0.25997315 [49,] 0.7043531 0.59129382 0.29564691 [50,] 0.6964808 0.60703833 0.30351917 [51,] 0.7569765 0.48604709 0.24302355 [52,] 0.5929850 0.81402992 0.40701496 > postscript(file="/var/www/html/rcomp/tmp/1gj7i1228160428.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index') > points(x[,1]-mysum$resid) > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/2a11c1228160428.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index') > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/3ldr21228160428.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals') > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/42xos1228160428.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals') > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/55n9j1228160428.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > qqnorm(mysum$resid, main='Residual Normal Q-Q Plot') > qqline(mysum$resid) > grid() > dev.off() null device 1 > (myerror <- as.ts(mysum$resid)) Time Series: Start = 1 End = 61 Frequency = 1 1 2 3 4 5 6 -109.711864 -114.711864 -399.711864 -47.711864 -207.711864 -400.711864 7 8 9 10 11 12 68.288136 8.288136 14.288136 289.288136 -38.711864 -72.711864 13 14 15 16 17 18 456.288136 -124.711864 -187.711864 -154.711864 224.288136 -237.711864 19 20 21 22 23 24 -32.711864 -35.711864 173.288136 310.288136 262.288136 402.288136 25 26 27 28 29 30 455.288136 -68.711864 57.288136 160.288136 244.288136 156.288136 31 32 33 34 35 36 -244.000000 244.000000 237.288136 311.288136 -120.711864 140.288136 37 38 39 40 41 42 -17.711864 -47.711864 -131.711864 -9.711864 75.288136 -289.711864 43 44 45 46 47 48 -101.711864 -1.711864 -84.711864 12.288136 -100.711864 -205.711864 49 50 51 52 53 54 196.288136 -31.711864 -267.711864 -361.711864 125.288136 -219.711864 55 56 57 58 59 60 -231.711864 14.288136 54.288136 -73.711864 119.288136 -195.711864 61 159.288136 > postscript(file="/var/www/html/rcomp/tmp/6cjgn1228160428.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > dum <- cbind(lag(myerror,k=1),myerror) > dum Time Series: Start = 0 End = 61 Frequency = 1 lag(myerror, k = 1) myerror 0 -109.711864 NA 1 -114.711864 -109.711864 2 -399.711864 -114.711864 3 -47.711864 -399.711864 4 -207.711864 -47.711864 5 -400.711864 -207.711864 6 68.288136 -400.711864 7 8.288136 68.288136 8 14.288136 8.288136 9 289.288136 14.288136 10 -38.711864 289.288136 11 -72.711864 -38.711864 12 456.288136 -72.711864 13 -124.711864 456.288136 14 -187.711864 -124.711864 15 -154.711864 -187.711864 16 224.288136 -154.711864 17 -237.711864 224.288136 18 -32.711864 -237.711864 19 -35.711864 -32.711864 20 173.288136 -35.711864 21 310.288136 173.288136 22 262.288136 310.288136 23 402.288136 262.288136 24 455.288136 402.288136 25 -68.711864 455.288136 26 57.288136 -68.711864 27 160.288136 57.288136 28 244.288136 160.288136 29 156.288136 244.288136 30 -244.000000 156.288136 31 244.000000 -244.000000 32 237.288136 244.000000 33 311.288136 237.288136 34 -120.711864 311.288136 35 140.288136 -120.711864 36 -17.711864 140.288136 37 -47.711864 -17.711864 38 -131.711864 -47.711864 39 -9.711864 -131.711864 40 75.288136 -9.711864 41 -289.711864 75.288136 42 -101.711864 -289.711864 43 -1.711864 -101.711864 44 -84.711864 -1.711864 45 12.288136 -84.711864 46 -100.711864 12.288136 47 -205.711864 -100.711864 48 196.288136 -205.711864 49 -31.711864 196.288136 50 -267.711864 -31.711864 51 -361.711864 -267.711864 52 125.288136 -361.711864 53 -219.711864 125.288136 54 -231.711864 -219.711864 55 14.288136 -231.711864 56 54.288136 14.288136 57 -73.711864 54.288136 58 119.288136 -73.711864 59 -195.711864 119.288136 60 159.288136 -195.711864 61 NA 159.288136 > dum1 <- dum[2:length(myerror),] > dum1 lag(myerror, k = 1) myerror [1,] -114.711864 -109.711864 [2,] -399.711864 -114.711864 [3,] -47.711864 -399.711864 [4,] -207.711864 -47.711864 [5,] -400.711864 -207.711864 [6,] 68.288136 -400.711864 [7,] 8.288136 68.288136 [8,] 14.288136 8.288136 [9,] 289.288136 14.288136 [10,] -38.711864 289.288136 [11,] -72.711864 -38.711864 [12,] 456.288136 -72.711864 [13,] -124.711864 456.288136 [14,] -187.711864 -124.711864 [15,] -154.711864 -187.711864 [16,] 224.288136 -154.711864 [17,] -237.711864 224.288136 [18,] -32.711864 -237.711864 [19,] -35.711864 -32.711864 [20,] 173.288136 -35.711864 [21,] 310.288136 173.288136 [22,] 262.288136 310.288136 [23,] 402.288136 262.288136 [24,] 455.288136 402.288136 [25,] -68.711864 455.288136 [26,] 57.288136 -68.711864 [27,] 160.288136 57.288136 [28,] 244.288136 160.288136 [29,] 156.288136 244.288136 [30,] -244.000000 156.288136 [31,] 244.000000 -244.000000 [32,] 237.288136 244.000000 [33,] 311.288136 237.288136 [34,] -120.711864 311.288136 [35,] 140.288136 -120.711864 [36,] -17.711864 140.288136 [37,] -47.711864 -17.711864 [38,] -131.711864 -47.711864 [39,] -9.711864 -131.711864 [40,] 75.288136 -9.711864 [41,] -289.711864 75.288136 [42,] -101.711864 -289.711864 [43,] -1.711864 -101.711864 [44,] -84.711864 -1.711864 [45,] 12.288136 -84.711864 [46,] -100.711864 12.288136 [47,] -205.711864 -100.711864 [48,] 196.288136 -205.711864 [49,] -31.711864 196.288136 [50,] -267.711864 -31.711864 [51,] -361.711864 -267.711864 [52,] 125.288136 -361.711864 [53,] -219.711864 125.288136 [54,] -231.711864 -219.711864 [55,] 14.288136 -231.711864 [56,] 54.288136 14.288136 [57,] -73.711864 54.288136 [58,] 119.288136 -73.711864 [59,] -195.711864 119.288136 [60,] 159.288136 -195.711864 > z <- as.data.frame(dum1) > z lag(myerror, k = 1) myerror 1 -114.711864 -109.711864 2 -399.711864 -114.711864 3 -47.711864 -399.711864 4 -207.711864 -47.711864 5 -400.711864 -207.711864 6 68.288136 -400.711864 7 8.288136 68.288136 8 14.288136 8.288136 9 289.288136 14.288136 10 -38.711864 289.288136 11 -72.711864 -38.711864 12 456.288136 -72.711864 13 -124.711864 456.288136 14 -187.711864 -124.711864 15 -154.711864 -187.711864 16 224.288136 -154.711864 17 -237.711864 224.288136 18 -32.711864 -237.711864 19 -35.711864 -32.711864 20 173.288136 -35.711864 21 310.288136 173.288136 22 262.288136 310.288136 23 402.288136 262.288136 24 455.288136 402.288136 25 -68.711864 455.288136 26 57.288136 -68.711864 27 160.288136 57.288136 28 244.288136 160.288136 29 156.288136 244.288136 30 -244.000000 156.288136 31 244.000000 -244.000000 32 237.288136 244.000000 33 311.288136 237.288136 34 -120.711864 311.288136 35 140.288136 -120.711864 36 -17.711864 140.288136 37 -47.711864 -17.711864 38 -131.711864 -47.711864 39 -9.711864 -131.711864 40 75.288136 -9.711864 41 -289.711864 75.288136 42 -101.711864 -289.711864 43 -1.711864 -101.711864 44 -84.711864 -1.711864 45 12.288136 -84.711864 46 -100.711864 12.288136 47 -205.711864 -100.711864 48 196.288136 -205.711864 49 -31.711864 196.288136 50 -267.711864 -31.711864 51 -361.711864 -267.711864 52 125.288136 -361.711864 53 -219.711864 125.288136 54 -231.711864 -219.711864 55 14.288136 -231.711864 56 54.288136 14.288136 57 -73.711864 54.288136 58 119.288136 -73.711864 59 -195.711864 119.288136 60 159.288136 -195.711864 > plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals') > lines(lowess(z)) > abline(lm(z)) > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/7oauw1228160428.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function') > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/8fe291228160428.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function') > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/9m7nj1228160428.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0)) > plot(mylm, las = 1, sub='Residual Diagnostics') > par(opar) > dev.off() null device 1 > if (n > n25) { + postscript(file="/var/www/html/rcomp/tmp/10i85c1228160428.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) + plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint') + grid() + dev.off() + } null device 1 > > #Note: the /var/www/html/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/www/html/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE) > a<-table.row.end(a) > myeq <- colnames(x)[1] > myeq <- paste(myeq, '[t] = ', sep='') > for (i in 1:k){ + if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '') + myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ') + if (rownames(mysum$coefficients)[i] != '(Intercept)') { + myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='') + if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='') + } + } > myeq <- paste(myeq, ' + e[t]') > a<-table.row.start(a) > a<-table.element(a, myeq) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/11l2ty1228160428.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Variable',header=TRUE) > a<-table.element(a,'Parameter',header=TRUE) > a<-table.element(a,'S.D.',header=TRUE) > a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE) > a<-table.element(a,'2-tail p-value',header=TRUE) > a<-table.element(a,'1-tail p-value',header=TRUE) > a<-table.row.end(a) > for (i in 1:k){ + a<-table.row.start(a) + a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE) + a<-table.element(a,mysum$coefficients[i,1]) + a<-table.element(a, round(mysum$coefficients[i,2],6)) + a<-table.element(a, round(mysum$coefficients[i,3],4)) + a<-table.element(a, round(mysum$coefficients[i,4],6)) + a<-table.element(a, round(mysum$coefficients[i,4]/2,6)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/12z74p1228160428.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Multiple R',1,TRUE) > a<-table.element(a, sqrt(mysum$r.squared)) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'R-squared',1,TRUE) > a<-table.element(a, mysum$r.squared) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Adjusted R-squared',1,TRUE) > a<-table.element(a, mysum$adj.r.squared) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (value)',1,TRUE) > a<-table.element(a, mysum$fstatistic[1]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE) > a<-table.element(a, mysum$fstatistic[2]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE) > a<-table.element(a, mysum$fstatistic[3]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'p-value',1,TRUE) > a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3])) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Residual Standard Deviation',1,TRUE) > a<-table.element(a, mysum$sigma) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Sum Squared Residuals',1,TRUE) > a<-table.element(a, sum(myerror*myerror)) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/13m0fr1228160428.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Time or Index', 1, TRUE) > a<-table.element(a, 'Actuals', 1, TRUE) > a<-table.element(a, 'Interpolation
Forecast', 1, TRUE) > a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE) > a<-table.row.end(a) > for (i in 1:n) { + a<-table.row.start(a) + a<-table.element(a,i, 1, TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,x[i]-mysum$resid[i]) + a<-table.element(a,mysum$resid[i]) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/14quv31228160428.tab") > if (n > n25) { + a<-table.start() + a<-table.row.start(a) + a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'p-values',header=TRUE) + a<-table.element(a,'Alternative Hypothesis',3,header=TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'breakpoint index',header=TRUE) + a<-table.element(a,'greater',header=TRUE) + a<-table.element(a,'2-sided',header=TRUE) + a<-table.element(a,'less',header=TRUE) + a<-table.row.end(a) + for (mypoint in kp3:nmkm3) { + a<-table.row.start(a) + a<-table.element(a,mypoint,header=TRUE) + a<-table.element(a,gqarr[mypoint-kp3+1,1]) + a<-table.element(a,gqarr[mypoint-kp3+1,2]) + a<-table.element(a,gqarr[mypoint-kp3+1,3]) + a<-table.row.end(a) + } + a<-table.end(a) + table.save(a,file="/var/www/html/rcomp/tmp/15c0f11228160428.tab") + a<-table.start() + a<-table.row.start(a) + a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'Description',header=TRUE) + a<-table.element(a,'# significant tests',header=TRUE) + a<-table.element(a,'% significant tests',header=TRUE) + a<-table.element(a,'OK/NOK',header=TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'1% type I error level',header=TRUE) + a<-table.element(a,numsignificant1) + a<-table.element(a,numsignificant1/numgqtests) + if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK' + a<-table.element(a,dum) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'5% type I error level',header=TRUE) + a<-table.element(a,numsignificant5) + a<-table.element(a,numsignificant5/numgqtests) + if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK' + a<-table.element(a,dum) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'10% type I error level',header=TRUE) + a<-table.element(a,numsignificant10) + a<-table.element(a,numsignificant10/numgqtests) + if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK' + a<-table.element(a,dum) + a<-table.row.end(a) + a<-table.end(a) + table.save(a,file="/var/www/html/rcomp/tmp/167i1x1228160428.tab") + } > > system("convert tmp/1gj7i1228160428.ps tmp/1gj7i1228160428.png") > system("convert tmp/2a11c1228160428.ps tmp/2a11c1228160428.png") > system("convert tmp/3ldr21228160428.ps tmp/3ldr21228160428.png") > system("convert tmp/42xos1228160428.ps tmp/42xos1228160428.png") > system("convert tmp/55n9j1228160428.ps tmp/55n9j1228160428.png") > system("convert tmp/6cjgn1228160428.ps tmp/6cjgn1228160428.png") > system("convert tmp/7oauw1228160428.ps tmp/7oauw1228160428.png") > system("convert tmp/8fe291228160428.ps tmp/8fe291228160428.png") > system("convert tmp/9m7nj1228160428.ps tmp/9m7nj1228160428.png") > system("convert tmp/10i85c1228160428.ps tmp/10i85c1228160428.png") > > > proc.time() user system elapsed 2.417 1.540 3.955