R version 2.8.0 (2008-10-20) Copyright (C) 2008 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- array(list(7.8,0,7.6,0,7.5,0,7.6,0,7.5,0,7.3,0,7.6,0,7.5,0,7.6,0,7.9,0,7.9,0,8.1,0,8.2,0,8.0,0,7.5,0,6.8,0,6.5,0,6.6,0,7.6,0,8.0,0,8.0,0,7.7,0,7.5,0,7.6,0,7.7,0,7.9,0,7.8,0,7.5,0,7.5,0,7.1,0,7.5,0,7.5,0,7.6,0,7.7,0,7.7,0,7.9,1,8.1,1,8.2,1,8.2,1,8.1,1,7.9,1,7.3,1,6.9,1,6.6,1,6.7,1,6.9,1,7.0,1,7.1,1,7.2,1,7.1,1,6.9,1,7.0,1,6.8,1,6.4,1,6.7,1,6.7,1,6.4,1,6.3,1,6.2,1,6.5,1,6.8,1,6.8,1,6.5,1,6.3,1,5.9,1,5.9,1,6.4,1,6.4,1),dim=c(2,68),dimnames=list(c('y','x'),1:68)) > y <- array(NA,dim=c(2,68),dimnames=list(c('y','x'),1:68)) > for (i in 1:dim(x)[1]) + { + for (j in 1:dim(x)[2]) + { + y[i,j] <- as.numeric(x[i,j]) + } + } > par3 = 'Linear Trend' > par2 = 'Include Monthly Dummies' > par1 = '0' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: AUTHOR(S), (YEAR), YOUR SOFTWARE TITLE (vNUMBER) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_YOURPAGE.wasp/ > #Source of accompanying publication: Office for Research, Development, and Education > #Technical description: Write here your technical program description (don't use hard returns!) > library(lattice) > par1 <- as.numeric(par1) > x <- t(y) > k <- length(x[1,]) > n <- length(x[,1]) > x1 <- cbind(x[,par1], x[,1:k!=par1]) > mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1]) > colnames(x1) <- mycolnames #colnames(x)[par1] > x <- x1 > if (par3 == 'First Differences'){ + x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep=''))) + for (i in 1:n-1) { + for (j in 1:k) { + x2[i,j] <- x[i+1,j] - x[i,j] + } + } + x <- x2 + } > if (par2 == 'Include Monthly Dummies'){ + x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep =''))) + for (i in 1:11){ + x2[seq(i,n,12),i] <- 1 + } + x <- cbind(x, x2) + } > if (par2 == 'Include Quarterly Dummies'){ + x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep =''))) + for (i in 1:3){ + x2[seq(i,n,4),i] <- 1 + } + x <- cbind(x, x2) + } > k <- length(x[1,]) > if (par3 == 'Linear Trend'){ + x <- cbind(x, c(1:n)) + colnames(x)[k+1] <- 't' + } > x y x M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 t 1 7.8 0 1 0 0 0 0 0 0 0 0 0 0 1 2 7.6 0 0 1 0 0 0 0 0 0 0 0 0 2 3 7.5 0 0 0 1 0 0 0 0 0 0 0 0 3 4 7.6 0 0 0 0 1 0 0 0 0 0 0 0 4 5 7.5 0 0 0 0 0 1 0 0 0 0 0 0 5 6 7.3 0 0 0 0 0 0 1 0 0 0 0 0 6 7 7.6 0 0 0 0 0 0 0 1 0 0 0 0 7 8 7.5 0 0 0 0 0 0 0 0 1 0 0 0 8 9 7.6 0 0 0 0 0 0 0 0 0 1 0 0 9 10 7.9 0 0 0 0 0 0 0 0 0 0 1 0 10 11 7.9 0 0 0 0 0 0 0 0 0 0 0 1 11 12 8.1 0 0 0 0 0 0 0 0 0 0 0 0 12 13 8.2 0 1 0 0 0 0 0 0 0 0 0 0 13 14 8.0 0 0 1 0 0 0 0 0 0 0 0 0 14 15 7.5 0 0 0 1 0 0 0 0 0 0 0 0 15 16 6.8 0 0 0 0 1 0 0 0 0 0 0 0 16 17 6.5 0 0 0 0 0 1 0 0 0 0 0 0 17 18 6.6 0 0 0 0 0 0 1 0 0 0 0 0 18 19 7.6 0 0 0 0 0 0 0 1 0 0 0 0 19 20 8.0 0 0 0 0 0 0 0 0 1 0 0 0 20 21 8.0 0 0 0 0 0 0 0 0 0 1 0 0 21 22 7.7 0 0 0 0 0 0 0 0 0 0 1 0 22 23 7.5 0 0 0 0 0 0 0 0 0 0 0 1 23 24 7.6 0 0 0 0 0 0 0 0 0 0 0 0 24 25 7.7 0 1 0 0 0 0 0 0 0 0 0 0 25 26 7.9 0 0 1 0 0 0 0 0 0 0 0 0 26 27 7.8 0 0 0 1 0 0 0 0 0 0 0 0 27 28 7.5 0 0 0 0 1 0 0 0 0 0 0 0 28 29 7.5 0 0 0 0 0 1 0 0 0 0 0 0 29 30 7.1 0 0 0 0 0 0 1 0 0 0 0 0 30 31 7.5 0 0 0 0 0 0 0 1 0 0 0 0 31 32 7.5 0 0 0 0 0 0 0 0 1 0 0 0 32 33 7.6 0 0 0 0 0 0 0 0 0 1 0 0 33 34 7.7 0 0 0 0 0 0 0 0 0 0 1 0 34 35 7.7 0 0 0 0 0 0 0 0 0 0 0 1 35 36 7.9 1 0 0 0 0 0 0 0 0 0 0 0 36 37 8.1 1 1 0 0 0 0 0 0 0 0 0 0 37 38 8.2 1 0 1 0 0 0 0 0 0 0 0 0 38 39 8.2 1 0 0 1 0 0 0 0 0 0 0 0 39 40 8.1 1 0 0 0 1 0 0 0 0 0 0 0 40 41 7.9 1 0 0 0 0 1 0 0 0 0 0 0 41 42 7.3 1 0 0 0 0 0 1 0 0 0 0 0 42 43 6.9 1 0 0 0 0 0 0 1 0 0 0 0 43 44 6.6 1 0 0 0 0 0 0 0 1 0 0 0 44 45 6.7 1 0 0 0 0 0 0 0 0 1 0 0 45 46 6.9 1 0 0 0 0 0 0 0 0 0 1 0 46 47 7.0 1 0 0 0 0 0 0 0 0 0 0 1 47 48 7.1 1 0 0 0 0 0 0 0 0 0 0 0 48 49 7.2 1 1 0 0 0 0 0 0 0 0 0 0 49 50 7.1 1 0 1 0 0 0 0 0 0 0 0 0 50 51 6.9 1 0 0 1 0 0 0 0 0 0 0 0 51 52 7.0 1 0 0 0 1 0 0 0 0 0 0 0 52 53 6.8 1 0 0 0 0 1 0 0 0 0 0 0 53 54 6.4 1 0 0 0 0 0 1 0 0 0 0 0 54 55 6.7 1 0 0 0 0 0 0 1 0 0 0 0 55 56 6.7 1 0 0 0 0 0 0 0 1 0 0 0 56 57 6.4 1 0 0 0 0 0 0 0 0 1 0 0 57 58 6.3 1 0 0 0 0 0 0 0 0 0 1 0 58 59 6.2 1 0 0 0 0 0 0 0 0 0 0 1 59 60 6.5 1 0 0 0 0 0 0 0 0 0 0 0 60 61 6.8 1 1 0 0 0 0 0 0 0 0 0 0 61 62 6.8 1 0 1 0 0 0 0 0 0 0 0 0 62 63 6.5 1 0 0 1 0 0 0 0 0 0 0 0 63 64 6.3 1 0 0 0 1 0 0 0 0 0 0 0 64 65 5.9 1 0 0 0 0 1 0 0 0 0 0 0 65 66 5.9 1 0 0 0 0 0 1 0 0 0 0 0 66 67 6.4 1 0 0 0 0 0 0 1 0 0 0 0 67 68 6.4 1 0 0 0 0 0 0 0 1 0 0 0 68 > k <- length(x[1,]) > df <- as.data.frame(x) > (mylm <- lm(df)) Call: lm(formula = df) Coefficients: (Intercept) x M1 M2 M3 M4 8.21700 0.13500 0.08767 0.07817 -0.09800 -0.25750 M5 M6 M7 M8 M9 M10 -0.43367 -0.65983 -0.28600 -0.26217 -0.22450 -0.16067 M11 t -0.17683 -0.02383 > (mysum <- summary(mylm)) Call: lm(formula = df) Residuals: Min 1Q Median 3Q Max -0.87817 -0.25475 -0.05517 0.23283 0.95883 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 8.217000 0.225413 36.453 < 2e-16 *** x 0.135000 0.221036 0.611 0.5439 M1 0.087667 0.268051 0.327 0.7449 M2 0.078167 0.267924 0.292 0.7716 M3 -0.098000 0.267916 -0.366 0.7160 M4 -0.257500 0.268026 -0.961 0.3410 M5 -0.433667 0.268254 -1.617 0.1118 M6 -0.659833 0.268599 -2.457 0.0173 * M7 -0.286000 0.269062 -1.063 0.2925 M8 -0.262167 0.269641 -0.972 0.3352 M9 -0.224500 0.281261 -0.798 0.4283 M10 -0.160667 0.281751 -0.570 0.5709 M11 -0.176833 0.282352 -0.626 0.5338 t -0.023833 0.005627 -4.235 8.94e-05 *** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 0.4421 on 54 degrees of freedom Multiple R-squared: 0.5904, Adjusted R-squared: 0.4918 F-statistic: 5.988 on 13 and 54 DF, p-value: 1.041e-06 > postscript(file="/var/www/html/rcomp/tmp/1ppt71228161064.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index') > points(x[,1]-mysum$resid) > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/2wnnk1228161064.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index') > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/3biq11228161064.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals') > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/4reqp1228161064.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals') > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/5xi1a1228161064.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > qqnorm(mysum$resid, main='Residual Normal Q-Q Plot') > grid() > dev.off() null device 1 > (myerror <- as.ts(mysum$resid)) Time Series: Start = 1 End = 68 Frequency = 1 1 2 3 4 5 6 -0.480833333 -0.647500000 -0.547500000 -0.264166667 -0.164166667 -0.114166667 7 8 9 10 11 12 -0.164166667 -0.264166667 -0.178000000 0.082000000 0.122000000 0.169000000 13 14 15 16 17 18 0.205166667 0.038500000 -0.261500000 -0.778166667 -0.878166667 -0.528166667 19 20 21 22 23 24 0.121833333 0.521833333 0.508000000 0.168000000 0.008000000 -0.045000000 25 26 27 28 29 30 -0.008833333 0.224500000 0.324500000 0.207833333 0.407833333 0.257833333 31 32 33 34 35 36 0.307833333 0.307833333 0.394000000 0.454000000 0.494000000 0.406000000 37 38 39 40 41 42 0.542166667 0.675500000 0.875500000 0.958833333 0.958833333 0.608833333 43 44 45 46 47 48 -0.141166667 -0.441166667 -0.355000000 -0.195000000 -0.055000000 -0.108000000 49 50 51 52 53 54 -0.071833333 -0.138500000 -0.138500000 0.144833333 0.144833333 -0.005166667 55 56 57 58 59 60 -0.055166667 -0.055166667 -0.369000000 -0.509000000 -0.569000000 -0.422000000 61 62 63 64 65 66 -0.185833333 -0.152500000 -0.252500000 -0.269166667 -0.469166667 -0.219166667 67 68 -0.069166667 -0.069166667 > postscript(file="/var/www/html/rcomp/tmp/6fpo61228161064.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > dum <- cbind(lag(myerror,k=1),myerror) > dum Time Series: Start = 0 End = 68 Frequency = 1 lag(myerror, k = 1) myerror 0 -0.480833333 NA 1 -0.647500000 -0.480833333 2 -0.547500000 -0.647500000 3 -0.264166667 -0.547500000 4 -0.164166667 -0.264166667 5 -0.114166667 -0.164166667 6 -0.164166667 -0.114166667 7 -0.264166667 -0.164166667 8 -0.178000000 -0.264166667 9 0.082000000 -0.178000000 10 0.122000000 0.082000000 11 0.169000000 0.122000000 12 0.205166667 0.169000000 13 0.038500000 0.205166667 14 -0.261500000 0.038500000 15 -0.778166667 -0.261500000 16 -0.878166667 -0.778166667 17 -0.528166667 -0.878166667 18 0.121833333 -0.528166667 19 0.521833333 0.121833333 20 0.508000000 0.521833333 21 0.168000000 0.508000000 22 0.008000000 0.168000000 23 -0.045000000 0.008000000 24 -0.008833333 -0.045000000 25 0.224500000 -0.008833333 26 0.324500000 0.224500000 27 0.207833333 0.324500000 28 0.407833333 0.207833333 29 0.257833333 0.407833333 30 0.307833333 0.257833333 31 0.307833333 0.307833333 32 0.394000000 0.307833333 33 0.454000000 0.394000000 34 0.494000000 0.454000000 35 0.406000000 0.494000000 36 0.542166667 0.406000000 37 0.675500000 0.542166667 38 0.875500000 0.675500000 39 0.958833333 0.875500000 40 0.958833333 0.958833333 41 0.608833333 0.958833333 42 -0.141166667 0.608833333 43 -0.441166667 -0.141166667 44 -0.355000000 -0.441166667 45 -0.195000000 -0.355000000 46 -0.055000000 -0.195000000 47 -0.108000000 -0.055000000 48 -0.071833333 -0.108000000 49 -0.138500000 -0.071833333 50 -0.138500000 -0.138500000 51 0.144833333 -0.138500000 52 0.144833333 0.144833333 53 -0.005166667 0.144833333 54 -0.055166667 -0.005166667 55 -0.055166667 -0.055166667 56 -0.369000000 -0.055166667 57 -0.509000000 -0.369000000 58 -0.569000000 -0.509000000 59 -0.422000000 -0.569000000 60 -0.185833333 -0.422000000 61 -0.152500000 -0.185833333 62 -0.252500000 -0.152500000 63 -0.269166667 -0.252500000 64 -0.469166667 -0.269166667 65 -0.219166667 -0.469166667 66 -0.069166667 -0.219166667 67 -0.069166667 -0.069166667 68 NA -0.069166667 > dum1 <- dum[2:length(myerror),] > dum1 lag(myerror, k = 1) myerror [1,] -0.647500000 -0.480833333 [2,] -0.547500000 -0.647500000 [3,] -0.264166667 -0.547500000 [4,] -0.164166667 -0.264166667 [5,] -0.114166667 -0.164166667 [6,] -0.164166667 -0.114166667 [7,] -0.264166667 -0.164166667 [8,] -0.178000000 -0.264166667 [9,] 0.082000000 -0.178000000 [10,] 0.122000000 0.082000000 [11,] 0.169000000 0.122000000 [12,] 0.205166667 0.169000000 [13,] 0.038500000 0.205166667 [14,] -0.261500000 0.038500000 [15,] -0.778166667 -0.261500000 [16,] -0.878166667 -0.778166667 [17,] -0.528166667 -0.878166667 [18,] 0.121833333 -0.528166667 [19,] 0.521833333 0.121833333 [20,] 0.508000000 0.521833333 [21,] 0.168000000 0.508000000 [22,] 0.008000000 0.168000000 [23,] -0.045000000 0.008000000 [24,] -0.008833333 -0.045000000 [25,] 0.224500000 -0.008833333 [26,] 0.324500000 0.224500000 [27,] 0.207833333 0.324500000 [28,] 0.407833333 0.207833333 [29,] 0.257833333 0.407833333 [30,] 0.307833333 0.257833333 [31,] 0.307833333 0.307833333 [32,] 0.394000000 0.307833333 [33,] 0.454000000 0.394000000 [34,] 0.494000000 0.454000000 [35,] 0.406000000 0.494000000 [36,] 0.542166667 0.406000000 [37,] 0.675500000 0.542166667 [38,] 0.875500000 0.675500000 [39,] 0.958833333 0.875500000 [40,] 0.958833333 0.958833333 [41,] 0.608833333 0.958833333 [42,] -0.141166667 0.608833333 [43,] -0.441166667 -0.141166667 [44,] -0.355000000 -0.441166667 [45,] -0.195000000 -0.355000000 [46,] -0.055000000 -0.195000000 [47,] -0.108000000 -0.055000000 [48,] -0.071833333 -0.108000000 [49,] -0.138500000 -0.071833333 [50,] -0.138500000 -0.138500000 [51,] 0.144833333 -0.138500000 [52,] 0.144833333 0.144833333 [53,] -0.005166667 0.144833333 [54,] -0.055166667 -0.005166667 [55,] -0.055166667 -0.055166667 [56,] -0.369000000 -0.055166667 [57,] -0.509000000 -0.369000000 [58,] -0.569000000 -0.509000000 [59,] -0.422000000 -0.569000000 [60,] -0.185833333 -0.422000000 [61,] -0.152500000 -0.185833333 [62,] -0.252500000 -0.152500000 [63,] -0.269166667 -0.252500000 [64,] -0.469166667 -0.269166667 [65,] -0.219166667 -0.469166667 [66,] -0.069166667 -0.219166667 [67,] -0.069166667 -0.069166667 > z <- as.data.frame(dum1) > z lag(myerror, k = 1) myerror 1 -0.647500000 -0.480833333 2 -0.547500000 -0.647500000 3 -0.264166667 -0.547500000 4 -0.164166667 -0.264166667 5 -0.114166667 -0.164166667 6 -0.164166667 -0.114166667 7 -0.264166667 -0.164166667 8 -0.178000000 -0.264166667 9 0.082000000 -0.178000000 10 0.122000000 0.082000000 11 0.169000000 0.122000000 12 0.205166667 0.169000000 13 0.038500000 0.205166667 14 -0.261500000 0.038500000 15 -0.778166667 -0.261500000 16 -0.878166667 -0.778166667 17 -0.528166667 -0.878166667 18 0.121833333 -0.528166667 19 0.521833333 0.121833333 20 0.508000000 0.521833333 21 0.168000000 0.508000000 22 0.008000000 0.168000000 23 -0.045000000 0.008000000 24 -0.008833333 -0.045000000 25 0.224500000 -0.008833333 26 0.324500000 0.224500000 27 0.207833333 0.324500000 28 0.407833333 0.207833333 29 0.257833333 0.407833333 30 0.307833333 0.257833333 31 0.307833333 0.307833333 32 0.394000000 0.307833333 33 0.454000000 0.394000000 34 0.494000000 0.454000000 35 0.406000000 0.494000000 36 0.542166667 0.406000000 37 0.675500000 0.542166667 38 0.875500000 0.675500000 39 0.958833333 0.875500000 40 0.958833333 0.958833333 41 0.608833333 0.958833333 42 -0.141166667 0.608833333 43 -0.441166667 -0.141166667 44 -0.355000000 -0.441166667 45 -0.195000000 -0.355000000 46 -0.055000000 -0.195000000 47 -0.108000000 -0.055000000 48 -0.071833333 -0.108000000 49 -0.138500000 -0.071833333 50 -0.138500000 -0.138500000 51 0.144833333 -0.138500000 52 0.144833333 0.144833333 53 -0.005166667 0.144833333 54 -0.055166667 -0.005166667 55 -0.055166667 -0.055166667 56 -0.369000000 -0.055166667 57 -0.509000000 -0.369000000 58 -0.569000000 -0.509000000 59 -0.422000000 -0.569000000 60 -0.185833333 -0.422000000 61 -0.152500000 -0.185833333 62 -0.252500000 -0.152500000 63 -0.269166667 -0.252500000 64 -0.469166667 -0.269166667 65 -0.219166667 -0.469166667 66 -0.069166667 -0.219166667 67 -0.069166667 -0.069166667 > plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals') > lines(lowess(z)) > abline(lm(z)) > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/780m11228161064.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function') > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/83b7m1228161064.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function') > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/9kce61228161064.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0)) > plot(mylm, las = 1, sub='Residual Diagnostics') > par(opar) > dev.off() null device 1 > > #Note: the /var/www/html/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/www/html/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE) > a<-table.row.end(a) > myeq <- colnames(x)[1] > myeq <- paste(myeq, '[t] = ', sep='') > for (i in 1:k){ + if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '') + myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ') + if (rownames(mysum$coefficients)[i] != '(Intercept)') { + myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='') + if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='') + } + } > myeq <- paste(myeq, ' + e[t]') > a<-table.row.start(a) > a<-table.element(a, myeq) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/10xawy1228161064.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Variable',header=TRUE) > a<-table.element(a,'Parameter',header=TRUE) > a<-table.element(a,'S.D.',header=TRUE) > a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE) > a<-table.element(a,'2-tail p-value',header=TRUE) > a<-table.element(a,'1-tail p-value',header=TRUE) > a<-table.row.end(a) > for (i in 1:k){ + a<-table.row.start(a) + a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE) + a<-table.element(a,mysum$coefficients[i,1]) + a<-table.element(a, round(mysum$coefficients[i,2],6)) + a<-table.element(a, round(mysum$coefficients[i,3],4)) + a<-table.element(a, round(mysum$coefficients[i,4],6)) + a<-table.element(a, round(mysum$coefficients[i,4]/2,6)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/11nv5p1228161064.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Multiple R',1,TRUE) > a<-table.element(a, sqrt(mysum$r.squared)) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'R-squared',1,TRUE) > a<-table.element(a, mysum$r.squared) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Adjusted R-squared',1,TRUE) > a<-table.element(a, mysum$adj.r.squared) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (value)',1,TRUE) > a<-table.element(a, mysum$fstatistic[1]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE) > a<-table.element(a, mysum$fstatistic[2]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE) > a<-table.element(a, mysum$fstatistic[3]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'p-value',1,TRUE) > a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3])) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Residual Standard Deviation',1,TRUE) > a<-table.element(a, mysum$sigma) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Sum Squared Residuals',1,TRUE) > a<-table.element(a, sum(myerror*myerror)) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/124pvc1228161064.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Time or Index', 1, TRUE) > a<-table.element(a, 'Actuals', 1, TRUE) > a<-table.element(a, 'Interpolation
Forecast', 1, TRUE) > a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE) > a<-table.row.end(a) > for (i in 1:n) { + a<-table.row.start(a) + a<-table.element(a,i, 1, TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,x[i]-mysum$resid[i]) + a<-table.element(a,mysum$resid[i]) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/1391sa1228161064.tab") > > system("convert tmp/1ppt71228161064.ps tmp/1ppt71228161064.png") > system("convert tmp/2wnnk1228161064.ps tmp/2wnnk1228161064.png") > system("convert tmp/3biq11228161064.ps tmp/3biq11228161064.png") > system("convert tmp/4reqp1228161064.ps tmp/4reqp1228161064.png") > system("convert tmp/5xi1a1228161064.ps tmp/5xi1a1228161064.png") > system("convert tmp/6fpo61228161064.ps tmp/6fpo61228161064.png") > system("convert tmp/780m11228161064.ps tmp/780m11228161064.png") > system("convert tmp/83b7m1228161064.ps tmp/83b7m1228161064.png") > system("convert tmp/9kce61228161064.ps tmp/9kce61228161064.png") > > > proc.time() user system elapsed 1.953 1.397 2.911