R version 2.7.0 (2008-04-22) Copyright (C) 2008 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- array(list(7.8,0,7.6,0,7.5,0,7.6,0,7.5,0,7.3,0,7.6,0,7.5,0,7.6,0,7.9,0,7.9,0,8.1,0,8.2,0,8.0,0,7.5,0,6.8,0,6.5,0,6.6,0,7.6,0,8.0,0,8.0,0,7.7,0,7.5,0,7.6,0,7.7,0,7.9,0,7.8,0,7.5,0,7.5,0,7.1,0,7.5,0,7.5,0,7.6,0,7.7,1,7.9,1,8.1,1,8.2,1,8.2,1,8.1,1,7.9,1,7.3,1,6.9,1,6.6,1,6.7,1,6.9,1,7.0,1,7.1,1,7.2,1,7.1,1,6.9,1,7.0,1,6.8,1,6.4,1,6.7,1,6.7,1,6.4,1,6.3,1,6.2,1,6.5,1,6.8,1,6.8,1,6.5,1,6.3,1,5.9,1,5.9,1,6.4,1,6.4,1),dim=c(2,67),dimnames=list(c('y','x'),1:67)) > y <- array(NA,dim=c(2,67),dimnames=list(c('y','x'),1:67)) > for (i in 1:dim(x)[1]) + { + for (j in 1:dim(x)[2]) + { + y[i,j] <- as.numeric(x[i,j]) + } + } > par3 = 'Linear Trend' > par2 = 'Include Monthly Dummies' > par1 = '0' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: AUTHOR(S), (YEAR), YOUR SOFTWARE TITLE (vNUMBER) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_YOURPAGE.wasp/ > #Source of accompanying publication: Office for Research, Development, and Education > #Technical description: Write here your technical program description (don't use hard returns!) > library(lattice) > par1 <- as.numeric(par1) > x <- t(y) > k <- length(x[1,]) > n <- length(x[,1]) > x1 <- cbind(x[,par1], x[,1:k!=par1]) > mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1]) > colnames(x1) <- mycolnames #colnames(x)[par1] > x <- x1 > if (par3 == 'First Differences'){ + x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep=''))) + for (i in 1:n-1) { + for (j in 1:k) { + x2[i,j] <- x[i+1,j] - x[i,j] + } + } + x <- x2 + } > if (par2 == 'Include Monthly Dummies'){ + x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep =''))) + for (i in 1:11){ + x2[seq(i,n,12),i] <- 1 + } + x <- cbind(x, x2) + } > if (par2 == 'Include Quarterly Dummies'){ + x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep =''))) + for (i in 1:3){ + x2[seq(i,n,4),i] <- 1 + } + x <- cbind(x, x2) + } > k <- length(x[1,]) > if (par3 == 'Linear Trend'){ + x <- cbind(x, c(1:n)) + colnames(x)[k+1] <- 't' + } > x y x M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 t 1 7.8 0 1 0 0 0 0 0 0 0 0 0 0 1 2 7.6 0 0 1 0 0 0 0 0 0 0 0 0 2 3 7.5 0 0 0 1 0 0 0 0 0 0 0 0 3 4 7.6 0 0 0 0 1 0 0 0 0 0 0 0 4 5 7.5 0 0 0 0 0 1 0 0 0 0 0 0 5 6 7.3 0 0 0 0 0 0 1 0 0 0 0 0 6 7 7.6 0 0 0 0 0 0 0 1 0 0 0 0 7 8 7.5 0 0 0 0 0 0 0 0 1 0 0 0 8 9 7.6 0 0 0 0 0 0 0 0 0 1 0 0 9 10 7.9 0 0 0 0 0 0 0 0 0 0 1 0 10 11 7.9 0 0 0 0 0 0 0 0 0 0 0 1 11 12 8.1 0 0 0 0 0 0 0 0 0 0 0 0 12 13 8.2 0 1 0 0 0 0 0 0 0 0 0 0 13 14 8.0 0 0 1 0 0 0 0 0 0 0 0 0 14 15 7.5 0 0 0 1 0 0 0 0 0 0 0 0 15 16 6.8 0 0 0 0 1 0 0 0 0 0 0 0 16 17 6.5 0 0 0 0 0 1 0 0 0 0 0 0 17 18 6.6 0 0 0 0 0 0 1 0 0 0 0 0 18 19 7.6 0 0 0 0 0 0 0 1 0 0 0 0 19 20 8.0 0 0 0 0 0 0 0 0 1 0 0 0 20 21 8.0 0 0 0 0 0 0 0 0 0 1 0 0 21 22 7.7 0 0 0 0 0 0 0 0 0 0 1 0 22 23 7.5 0 0 0 0 0 0 0 0 0 0 0 1 23 24 7.6 0 0 0 0 0 0 0 0 0 0 0 0 24 25 7.7 0 1 0 0 0 0 0 0 0 0 0 0 25 26 7.9 0 0 1 0 0 0 0 0 0 0 0 0 26 27 7.8 0 0 0 1 0 0 0 0 0 0 0 0 27 28 7.5 0 0 0 0 1 0 0 0 0 0 0 0 28 29 7.5 0 0 0 0 0 1 0 0 0 0 0 0 29 30 7.1 0 0 0 0 0 0 1 0 0 0 0 0 30 31 7.5 0 0 0 0 0 0 0 1 0 0 0 0 31 32 7.5 0 0 0 0 0 0 0 0 1 0 0 0 32 33 7.6 0 0 0 0 0 0 0 0 0 1 0 0 33 34 7.7 1 0 0 0 0 0 0 0 0 0 1 0 34 35 7.9 1 0 0 0 0 0 0 0 0 0 0 1 35 36 8.1 1 0 0 0 0 0 0 0 0 0 0 0 36 37 8.2 1 1 0 0 0 0 0 0 0 0 0 0 37 38 8.2 1 0 1 0 0 0 0 0 0 0 0 0 38 39 8.1 1 0 0 1 0 0 0 0 0 0 0 0 39 40 7.9 1 0 0 0 1 0 0 0 0 0 0 0 40 41 7.3 1 0 0 0 0 1 0 0 0 0 0 0 41 42 6.9 1 0 0 0 0 0 1 0 0 0 0 0 42 43 6.6 1 0 0 0 0 0 0 1 0 0 0 0 43 44 6.7 1 0 0 0 0 0 0 0 1 0 0 0 44 45 6.9 1 0 0 0 0 0 0 0 0 1 0 0 45 46 7.0 1 0 0 0 0 0 0 0 0 0 1 0 46 47 7.1 1 0 0 0 0 0 0 0 0 0 0 1 47 48 7.2 1 0 0 0 0 0 0 0 0 0 0 0 48 49 7.1 1 1 0 0 0 0 0 0 0 0 0 0 49 50 6.9 1 0 1 0 0 0 0 0 0 0 0 0 50 51 7.0 1 0 0 1 0 0 0 0 0 0 0 0 51 52 6.8 1 0 0 0 1 0 0 0 0 0 0 0 52 53 6.4 1 0 0 0 0 1 0 0 0 0 0 0 53 54 6.7 1 0 0 0 0 0 1 0 0 0 0 0 54 55 6.7 1 0 0 0 0 0 0 1 0 0 0 0 55 56 6.4 1 0 0 0 0 0 0 0 1 0 0 0 56 57 6.3 1 0 0 0 0 0 0 0 0 1 0 0 57 58 6.2 1 0 0 0 0 0 0 0 0 0 1 0 58 59 6.5 1 0 0 0 0 0 0 0 0 0 0 1 59 60 6.8 1 0 0 0 0 0 0 0 0 0 0 0 60 61 6.8 1 1 0 0 0 0 0 0 0 0 0 0 61 62 6.5 1 0 1 0 0 0 0 0 0 0 0 0 62 63 6.3 1 0 0 1 0 0 0 0 0 0 0 0 63 64 5.9 1 0 0 0 1 0 0 0 0 0 0 0 64 65 5.9 1 0 0 0 0 1 0 0 0 0 0 0 65 66 6.4 1 0 0 0 0 0 1 0 0 0 0 0 66 67 6.4 1 0 0 0 0 0 0 1 0 0 0 0 67 > k <- length(x[1,]) > df <- as.data.frame(x) > (mylm <- lm(df)) Call: lm(formula = df) Coefficients: (Intercept) x M1 M2 M3 M4 8.38947 0.26206 -0.03750 -0.12676 -0.24935 -0.50528 M5 M6 M7 M8 M9 M10 -0.71120 -0.70046 -0.43972 -0.39722 -0.30981 -0.31482 M11 t -0.20741 -0.02741 > (mysum <- summary(mylm)) Call: lm(formula = df) Residuals: Min 1Q Median 3Q Max -0.71232 -0.25656 -0.04123 0.27654 0.85009 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 8.389474 0.216535 38.744 < 2e-16 *** x 0.262061 0.211976 1.236 0.22181 M1 -0.037504 0.255961 -0.147 0.88407 M2 -0.126762 0.255831 -0.495 0.62230 M3 -0.249353 0.255817 -0.975 0.33412 M4 -0.505278 0.255920 -1.974 0.05356 . M5 -0.711202 0.256139 -2.777 0.00758 ** M6 -0.700461 0.256475 -2.731 0.00855 ** M7 -0.439719 0.256926 -1.711 0.09284 . M8 -0.397222 0.268196 -1.481 0.14450 M9 -0.309814 0.268559 -1.154 0.25383 M10 -0.314817 0.267186 -1.178 0.24395 M11 -0.207409 0.267019 -0.777 0.44076 t -0.027409 0.005463 -5.017 6.26e-06 *** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 0.4221 on 53 degrees of freedom Multiple R-squared: 0.6307, Adjusted R-squared: 0.5401 F-statistic: 6.961 on 13 and 53 DF, p-value: 1.349e-07 > postscript(file="/var/www/html/rcomp/tmp/15zj01228170546.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index') > points(x[,1]-mysum$resid) > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/2lnqu1228170546.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index') > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/3irop1228170546.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals') > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/4whr21228170546.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals') > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/5vocs1228170546.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > qqnorm(mysum$resid, main='Residual Normal Q-Q Plot') > grid() > dev.off() null device 1 > (myerror <- as.ts(mysum$resid)) Time Series: Start = 1 End = 67 Frequency = 1 1 2 3 4 5 6 -0.524561404 -0.607894737 -0.557894737 -0.174561404 -0.041228070 -0.224561404 7 8 9 10 11 12 -0.157894737 -0.272982456 -0.232982456 0.099429825 0.019429825 0.039429825 13 14 15 16 17 18 0.204342105 0.121008772 -0.228991228 -0.645657895 -0.712324561 -0.595657895 19 20 21 22 23 24 0.171008772 0.555921053 0.495921053 0.228333333 -0.051666667 -0.131666667 25 26 27 28 29 30 0.033245614 0.349912281 0.399912281 0.383245614 0.616578947 0.233245614 31 32 33 34 35 36 0.399912281 0.384824561 0.424824561 0.295175439 0.415175439 0.435175439 37 38 39 40 41 42 0.600087719 0.716754386 0.766754386 0.850087719 0.483421053 0.100087719 43 44 45 46 47 48 -0.433245614 -0.348333333 -0.208333333 -0.075921053 -0.055921053 -0.135921053 49 50 51 52 53 54 -0.171008772 -0.254342105 -0.004342105 0.078991228 -0.087675439 0.228991228 55 56 57 58 59 60 -0.004342105 -0.319429825 -0.479429825 -0.547017544 -0.327017544 -0.207017544 61 62 63 64 65 66 -0.142105263 -0.325438596 -0.375438596 -0.492105263 -0.258771930 0.257894737 67 0.024561404 > postscript(file="/var/www/html/rcomp/tmp/6txsp1228170546.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > dum <- cbind(lag(myerror,k=1),myerror) > dum Time Series: Start = 0 End = 67 Frequency = 1 lag(myerror, k = 1) myerror 0 -0.524561404 NA 1 -0.607894737 -0.524561404 2 -0.557894737 -0.607894737 3 -0.174561404 -0.557894737 4 -0.041228070 -0.174561404 5 -0.224561404 -0.041228070 6 -0.157894737 -0.224561404 7 -0.272982456 -0.157894737 8 -0.232982456 -0.272982456 9 0.099429825 -0.232982456 10 0.019429825 0.099429825 11 0.039429825 0.019429825 12 0.204342105 0.039429825 13 0.121008772 0.204342105 14 -0.228991228 0.121008772 15 -0.645657895 -0.228991228 16 -0.712324561 -0.645657895 17 -0.595657895 -0.712324561 18 0.171008772 -0.595657895 19 0.555921053 0.171008772 20 0.495921053 0.555921053 21 0.228333333 0.495921053 22 -0.051666667 0.228333333 23 -0.131666667 -0.051666667 24 0.033245614 -0.131666667 25 0.349912281 0.033245614 26 0.399912281 0.349912281 27 0.383245614 0.399912281 28 0.616578947 0.383245614 29 0.233245614 0.616578947 30 0.399912281 0.233245614 31 0.384824561 0.399912281 32 0.424824561 0.384824561 33 0.295175439 0.424824561 34 0.415175439 0.295175439 35 0.435175439 0.415175439 36 0.600087719 0.435175439 37 0.716754386 0.600087719 38 0.766754386 0.716754386 39 0.850087719 0.766754386 40 0.483421053 0.850087719 41 0.100087719 0.483421053 42 -0.433245614 0.100087719 43 -0.348333333 -0.433245614 44 -0.208333333 -0.348333333 45 -0.075921053 -0.208333333 46 -0.055921053 -0.075921053 47 -0.135921053 -0.055921053 48 -0.171008772 -0.135921053 49 -0.254342105 -0.171008772 50 -0.004342105 -0.254342105 51 0.078991228 -0.004342105 52 -0.087675439 0.078991228 53 0.228991228 -0.087675439 54 -0.004342105 0.228991228 55 -0.319429825 -0.004342105 56 -0.479429825 -0.319429825 57 -0.547017544 -0.479429825 58 -0.327017544 -0.547017544 59 -0.207017544 -0.327017544 60 -0.142105263 -0.207017544 61 -0.325438596 -0.142105263 62 -0.375438596 -0.325438596 63 -0.492105263 -0.375438596 64 -0.258771930 -0.492105263 65 0.257894737 -0.258771930 66 0.024561404 0.257894737 67 NA 0.024561404 > dum1 <- dum[2:length(myerror),] > dum1 lag(myerror, k = 1) myerror [1,] -0.607894737 -0.524561404 [2,] -0.557894737 -0.607894737 [3,] -0.174561404 -0.557894737 [4,] -0.041228070 -0.174561404 [5,] -0.224561404 -0.041228070 [6,] -0.157894737 -0.224561404 [7,] -0.272982456 -0.157894737 [8,] -0.232982456 -0.272982456 [9,] 0.099429825 -0.232982456 [10,] 0.019429825 0.099429825 [11,] 0.039429825 0.019429825 [12,] 0.204342105 0.039429825 [13,] 0.121008772 0.204342105 [14,] -0.228991228 0.121008772 [15,] -0.645657895 -0.228991228 [16,] -0.712324561 -0.645657895 [17,] -0.595657895 -0.712324561 [18,] 0.171008772 -0.595657895 [19,] 0.555921053 0.171008772 [20,] 0.495921053 0.555921053 [21,] 0.228333333 0.495921053 [22,] -0.051666667 0.228333333 [23,] -0.131666667 -0.051666667 [24,] 0.033245614 -0.131666667 [25,] 0.349912281 0.033245614 [26,] 0.399912281 0.349912281 [27,] 0.383245614 0.399912281 [28,] 0.616578947 0.383245614 [29,] 0.233245614 0.616578947 [30,] 0.399912281 0.233245614 [31,] 0.384824561 0.399912281 [32,] 0.424824561 0.384824561 [33,] 0.295175439 0.424824561 [34,] 0.415175439 0.295175439 [35,] 0.435175439 0.415175439 [36,] 0.600087719 0.435175439 [37,] 0.716754386 0.600087719 [38,] 0.766754386 0.716754386 [39,] 0.850087719 0.766754386 [40,] 0.483421053 0.850087719 [41,] 0.100087719 0.483421053 [42,] -0.433245614 0.100087719 [43,] -0.348333333 -0.433245614 [44,] -0.208333333 -0.348333333 [45,] -0.075921053 -0.208333333 [46,] -0.055921053 -0.075921053 [47,] -0.135921053 -0.055921053 [48,] -0.171008772 -0.135921053 [49,] -0.254342105 -0.171008772 [50,] -0.004342105 -0.254342105 [51,] 0.078991228 -0.004342105 [52,] -0.087675439 0.078991228 [53,] 0.228991228 -0.087675439 [54,] -0.004342105 0.228991228 [55,] -0.319429825 -0.004342105 [56,] -0.479429825 -0.319429825 [57,] -0.547017544 -0.479429825 [58,] -0.327017544 -0.547017544 [59,] -0.207017544 -0.327017544 [60,] -0.142105263 -0.207017544 [61,] -0.325438596 -0.142105263 [62,] -0.375438596 -0.325438596 [63,] -0.492105263 -0.375438596 [64,] -0.258771930 -0.492105263 [65,] 0.257894737 -0.258771930 [66,] 0.024561404 0.257894737 > z <- as.data.frame(dum1) > z lag(myerror, k = 1) myerror 1 -0.607894737 -0.524561404 2 -0.557894737 -0.607894737 3 -0.174561404 -0.557894737 4 -0.041228070 -0.174561404 5 -0.224561404 -0.041228070 6 -0.157894737 -0.224561404 7 -0.272982456 -0.157894737 8 -0.232982456 -0.272982456 9 0.099429825 -0.232982456 10 0.019429825 0.099429825 11 0.039429825 0.019429825 12 0.204342105 0.039429825 13 0.121008772 0.204342105 14 -0.228991228 0.121008772 15 -0.645657895 -0.228991228 16 -0.712324561 -0.645657895 17 -0.595657895 -0.712324561 18 0.171008772 -0.595657895 19 0.555921053 0.171008772 20 0.495921053 0.555921053 21 0.228333333 0.495921053 22 -0.051666667 0.228333333 23 -0.131666667 -0.051666667 24 0.033245614 -0.131666667 25 0.349912281 0.033245614 26 0.399912281 0.349912281 27 0.383245614 0.399912281 28 0.616578947 0.383245614 29 0.233245614 0.616578947 30 0.399912281 0.233245614 31 0.384824561 0.399912281 32 0.424824561 0.384824561 33 0.295175439 0.424824561 34 0.415175439 0.295175439 35 0.435175439 0.415175439 36 0.600087719 0.435175439 37 0.716754386 0.600087719 38 0.766754386 0.716754386 39 0.850087719 0.766754386 40 0.483421053 0.850087719 41 0.100087719 0.483421053 42 -0.433245614 0.100087719 43 -0.348333333 -0.433245614 44 -0.208333333 -0.348333333 45 -0.075921053 -0.208333333 46 -0.055921053 -0.075921053 47 -0.135921053 -0.055921053 48 -0.171008772 -0.135921053 49 -0.254342105 -0.171008772 50 -0.004342105 -0.254342105 51 0.078991228 -0.004342105 52 -0.087675439 0.078991228 53 0.228991228 -0.087675439 54 -0.004342105 0.228991228 55 -0.319429825 -0.004342105 56 -0.479429825 -0.319429825 57 -0.547017544 -0.479429825 58 -0.327017544 -0.547017544 59 -0.207017544 -0.327017544 60 -0.142105263 -0.207017544 61 -0.325438596 -0.142105263 62 -0.375438596 -0.325438596 63 -0.492105263 -0.375438596 64 -0.258771930 -0.492105263 65 0.257894737 -0.258771930 66 0.024561404 0.257894737 > plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals') > lines(lowess(z)) > abline(lm(z)) > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/7drjl1228170546.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function') > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/8qvuj1228170546.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function') > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/90jy41228170546.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0)) > plot(mylm, las = 1, sub='Residual Diagnostics') > par(opar) > dev.off() null device 1 > > #Note: the /var/www/html/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/www/html/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE) > a<-table.row.end(a) > myeq <- colnames(x)[1] > myeq <- paste(myeq, '[t] = ', sep='') > for (i in 1:k){ + if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '') + myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ') + if (rownames(mysum$coefficients)[i] != '(Intercept)') { + myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='') + if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='') + } + } > myeq <- paste(myeq, ' + e[t]') > a<-table.row.start(a) > a<-table.element(a, myeq) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/10i1jp1228170546.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Variable',header=TRUE) > a<-table.element(a,'Parameter',header=TRUE) > a<-table.element(a,'S.D.',header=TRUE) > a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE) > a<-table.element(a,'2-tail p-value',header=TRUE) > a<-table.element(a,'1-tail p-value',header=TRUE) > a<-table.row.end(a) > for (i in 1:k){ + a<-table.row.start(a) + a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE) + a<-table.element(a,mysum$coefficients[i,1]) + a<-table.element(a, round(mysum$coefficients[i,2],6)) + a<-table.element(a, round(mysum$coefficients[i,3],4)) + a<-table.element(a, round(mysum$coefficients[i,4],6)) + a<-table.element(a, round(mysum$coefficients[i,4]/2,6)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/11rl6d1228170546.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Multiple R',1,TRUE) > a<-table.element(a, sqrt(mysum$r.squared)) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'R-squared',1,TRUE) > a<-table.element(a, mysum$r.squared) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Adjusted R-squared',1,TRUE) > a<-table.element(a, mysum$adj.r.squared) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (value)',1,TRUE) > a<-table.element(a, mysum$fstatistic[1]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE) > a<-table.element(a, mysum$fstatistic[2]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE) > a<-table.element(a, mysum$fstatistic[3]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'p-value',1,TRUE) > a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3])) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Residual Standard Deviation',1,TRUE) > a<-table.element(a, mysum$sigma) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Sum Squared Residuals',1,TRUE) > a<-table.element(a, sum(myerror*myerror)) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/12nz661228170546.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Time or Index', 1, TRUE) > a<-table.element(a, 'Actuals', 1, TRUE) > a<-table.element(a, 'Interpolation
Forecast', 1, TRUE) > a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE) > a<-table.row.end(a) > for (i in 1:n) { + a<-table.row.start(a) + a<-table.element(a,i, 1, TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,x[i]-mysum$resid[i]) + a<-table.element(a,mysum$resid[i]) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/130xm91228170546.tab") > > system("convert tmp/15zj01228170546.ps tmp/15zj01228170546.png") > system("convert tmp/2lnqu1228170546.ps tmp/2lnqu1228170546.png") > system("convert tmp/3irop1228170546.ps tmp/3irop1228170546.png") > system("convert tmp/4whr21228170546.ps tmp/4whr21228170546.png") > system("convert tmp/5vocs1228170546.ps tmp/5vocs1228170546.png") > system("convert tmp/6txsp1228170546.ps tmp/6txsp1228170546.png") > system("convert tmp/7drjl1228170546.ps tmp/7drjl1228170546.png") > system("convert tmp/8qvuj1228170546.ps tmp/8qvuj1228170546.png") > system("convert tmp/90jy41228170546.ps tmp/90jy41228170546.png") > > > proc.time() user system elapsed 3.973 2.436 4.325