R version 2.8.0 (2008-10-20) Copyright (C) 2008 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- c(97.3,101,113.2,101,105.7,113.9,86.4,96.5,103.3,114.9,105.8,94.2,98.4,99.4,108.8,112.6,104.4,112.2,81.1,97.1,112.6,113.8,107.8,103.2,103.3,101.2,107.7,110.4,101.9,115.9,89.9,88.6,117.2,123.9,100,103.6,94.1,98.7,119.5,112.7,104.4,124.7,89.1,97,121.6,118.8,114,111.5,97.2,102.5,113.4,109.8,104.9,126.1,80,96.8,117.2,112.3,117.3,111.1,102.2,104.3,122.9,107.6,121.3,131.5,89,104.4,128.9,135.9,133.3,121.3,120.5,120.4,137.9,126.1,133.2,146.6,103.4,117.2) > par10 = 'FALSE' > par9 = '0' > par8 = '0' > par7 = '0' > par6 = '3' > par5 = '12' > par4 = '1' > par3 = '0' > par2 = '1' > par1 = '0' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: AUTHOR(S), (YEAR), YOUR SOFTWARE TITLE (vNUMBER) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_YOURPAGE.wasp/ > #Source of accompanying publication: Office for Research, Development, and Education > #Technical description: Write here your technical program description (don't use hard returns!) > par1 <- as.numeric(par1) #cut off periods > par2 <- as.numeric(par2) #lambda > par3 <- as.numeric(par3) #degree of non-seasonal differencing > par4 <- as.numeric(par4) #degree of seasonal differencing > par5 <- as.numeric(par5) #seasonal period > par6 <- as.numeric(par6) #p > par7 <- as.numeric(par7) #q > par8 <- as.numeric(par8) #P > par9 <- as.numeric(par9) #Q > if (par10 == 'TRUE') par10 <- TRUE > if (par10 == 'FALSE') par10 <- FALSE > if (par2 == 0) x <- log(x) > if (par2 != 0) x <- x^par2 > lx <- length(x) > first <- lx - 2*par1 > nx <- lx - par1 > nx1 <- nx + 1 > fx <- lx - nx > if (fx < 1) { + fx <- par5 + nx1 <- lx + fx - 1 + first <- lx - 2*fx + } > first <- 1 > if (fx < 3) fx <- round(lx/10,0) > (arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML')) Call: arima(x = x[1:nx], order = c(par6, par3, par7), seasonal = list(order = c(par8, par4, par9), period = par5), include.mean = par10, method = "ML") Coefficients: ar1 ar2 ar3 0.2016 0.2563 0.3993 s.e. 0.1094 0.1083 0.1107 sigma^2 estimated as 36.98: log likelihood = -219.9, aic = 447.8 > (forecast <- predict(arima.out,fx)) $pred Time Series: Start = 81 End = 92 Frequency = 1 [1] 141.2005 147.4103 143.8841 131.2954 129.8238 129.0677 146.0282 133.6831 [9] 140.2730 153.2150 109.5743 122.9644 $se Time Series: Start = 81 End = 92 Frequency = 1 [1] 6.081034 6.203395 6.460801 7.168833 7.340575 7.566529 7.830243 7.973928 [9] 8.123763 8.261798 8.363909 8.459519 > (lb <- forecast$pred - 1.96 * forecast$se) Time Series: Start = 81 End = 92 Frequency = 1 [1] 129.28172 135.25165 131.22091 117.24447 115.43626 114.23726 130.68092 [8] 118.05421 124.35039 137.02189 93.18103 106.38371 > (ub <- forecast$pred + 1.96 * forecast$se) Time Series: Start = 81 End = 92 Frequency = 1 [1] 153.1194 159.5690 156.5472 145.3463 144.2113 143.8981 161.3755 149.3120 [9] 156.1955 169.4081 125.9676 139.5450 > if (par2 == 0) { + x <- exp(x) + forecast$pred <- exp(forecast$pred) + lb <- exp(lb) + ub <- exp(ub) + } > if (par2 != 0) { + x <- x^(1/par2) + forecast$pred <- forecast$pred^(1/par2) + lb <- lb^(1/par2) + ub <- ub^(1/par2) + } > if (par2 < 0) { + olb <- lb + lb <- ub + ub <- olb + } > (actandfor <- c(x[1:nx], forecast$pred)) [1] 97.3000 101.0000 113.2000 101.0000 105.7000 113.9000 86.4000 96.5000 [9] 103.3000 114.9000 105.8000 94.2000 98.4000 99.4000 108.8000 112.6000 [17] 104.4000 112.2000 81.1000 97.1000 112.6000 113.8000 107.8000 103.2000 [25] 103.3000 101.2000 107.7000 110.4000 101.9000 115.9000 89.9000 88.6000 [33] 117.2000 123.9000 100.0000 103.6000 94.1000 98.7000 119.5000 112.7000 [41] 104.4000 124.7000 89.1000 97.0000 121.6000 118.8000 114.0000 111.5000 [49] 97.2000 102.5000 113.4000 109.8000 104.9000 126.1000 80.0000 96.8000 [57] 117.2000 112.3000 117.3000 111.1000 102.2000 104.3000 122.9000 107.6000 [65] 121.3000 131.5000 89.0000 104.4000 128.9000 135.9000 133.3000 121.3000 [73] 120.5000 120.4000 137.9000 126.1000 133.2000 146.6000 103.4000 117.2000 [81] 141.2005 147.4103 143.8841 131.2954 129.8238 129.0677 146.0282 133.6831 [89] 140.2730 153.2150 109.5743 122.9644 > (perc.se <- (ub-forecast$pred)/1.96/forecast$pred) Time Series: Start = 81 End = 92 Frequency = 1 [1] 0.04306665 0.04208250 0.04490282 0.05460080 0.05654260 0.05862452 [7] 0.05362144 0.05964798 0.05791396 0.05392290 0.07633095 0.06879650 > postscript(file="/var/www/html/rcomp/tmp/1vss31228927764.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mar=c(4,4,2,2),las=1) > ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub)) > plot(x,ylim=ylim,type='n',xlim=c(first,lx)) > usr <- par('usr') > rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon') > rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender') > abline(h= (-3:3)*2 , col ='gray', lty =3) > polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA) > lines(nx1:lx, lb , lty=2) > lines(nx1:lx, ub , lty=2) > lines(x, lwd=2) > lines(nx1:lx, forecast$pred , lwd=2 , col ='white') > box() > par(opar) > dev.off() null device 1 > prob.dec <- array(NA, dim=fx) > prob.sdec <- array(NA, dim=fx) > prob.ldec <- array(NA, dim=fx) > prob.pval <- array(NA, dim=fx) > perf.pe <- array(0, dim=fx) > perf.mape <- array(0, dim=fx) > perf.se <- array(0, dim=fx) > perf.mse <- array(0, dim=fx) > perf.rmse <- array(0, dim=fx) > for (i in 1:fx) { + locSD <- (ub[i] - forecast$pred[i]) / 1.96 + perf.pe[i] = (x[nx+i] - forecast$pred[i]) / forecast$pred[i] + perf.mape[i] = perf.mape[i] + abs(perf.pe[i]) + perf.se[i] = (x[nx+i] - forecast$pred[i])^2 + perf.mse[i] = perf.mse[i] + perf.se[i] + prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD) + prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD) + prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD) + prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD) + } > perf.mape = perf.mape / fx > perf.mse = perf.mse / fx > perf.rmse = sqrt(perf.mse) > postscript(file="/var/www/html/rcomp/tmp/2alay1228927764.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub))) > dum <- forecast$pred > dum[1:12] <- x[(nx+1):lx] > lines(dum, lty=1) > lines(ub,lty=3) > lines(lb,lty=3) > dev.off() null device 1 > > #Note: the /var/www/html/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/www/html/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'Y[t]',1,header=TRUE) > a<-table.element(a,'F[t]',1,header=TRUE) > a<-table.element(a,'95% LB',1,header=TRUE) > a<-table.element(a,'95% UB',1,header=TRUE) > a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE) > mylab <- paste('P(F[t]>Y[',nx,sep='') > mylab <- paste(mylab,'])',sep='') > a<-table.element(a,mylab,1,header=TRUE) > a<-table.row.end(a) > for (i in (nx-par5):nx) { + a<-table.row.start(a) + a<-table.element(a,i,header=TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.row.end(a) + } > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(x[nx+i],4)) + a<-table.element(a,round(forecast$pred[i],4)) + a<-table.element(a,round(lb[i],4)) + a<-table.element(a,round(ub[i],4)) + a<-table.element(a,round((1-prob.pval[i]),4)) + a<-table.element(a,round((1-prob.dec[i]),4)) + a<-table.element(a,round((1-prob.sdec[i]),4)) + a<-table.element(a,round((1-prob.ldec[i]),4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/3ps371228927764.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',7,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'% S.E.',1,header=TRUE) > a<-table.element(a,'PE',1,header=TRUE) > a<-table.element(a,'MAPE',1,header=TRUE) > a<-table.element(a,'Sq.E',1,header=TRUE) > a<-table.element(a,'MSE',1,header=TRUE) > a<-table.element(a,'RMSE',1,header=TRUE) > a<-table.row.end(a) > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(perc.se[i],4)) + a<-table.element(a,round(perf.pe[i],4)) + a<-table.element(a,round(perf.mape[i],4)) + a<-table.element(a,round(perf.se[i],4)) + a<-table.element(a,round(perf.mse[i],4)) + a<-table.element(a,round(perf.rmse[i],4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/4oaa41228927764.tab") > > system("convert tmp/1vss31228927764.ps tmp/1vss31228927764.png") > system("convert tmp/2alay1228927764.ps tmp/2alay1228927764.png") > > > proc.time() user system elapsed 0.660 0.335 0.775