Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_smp.wasp
Title produced by softwareStandard Deviation-Mean Plot
Date of computationFri, 12 Dec 2008 05:06:26 -0700
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2008/Dec/12/t1229084270jad8t793oha20rb.htm/, Retrieved Tue, 12 Nov 2024 22:22:58 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=32610, Retrieved Tue, 12 Nov 2024 22:22:58 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact278
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
F     [Univariate Data Series] [Airline data] [2007-10-18 09:58:47] [42daae401fd3def69a25014f2252b4c2]
F RMPD  [Standard Deviation-Mean Plot] [Q5 Standard DMP] [2008-11-29 16:26:32] [aa5573c1db401b164e448aef050955a1]
-   PD    [Standard Deviation-Mean Plot] [Q8 SDMN bouwprod] [2008-11-30 00:14:02] [aa5573c1db401b164e448aef050955a1]
-           [Standard Deviation-Mean Plot] [Q8 SDMN bouwprod] [2008-11-30 00:31:28] [aa5573c1db401b164e448aef050955a1]
-   P           [Standard Deviation-Mean Plot] [Standard Deviatio...] [2008-12-12 12:06:26] [8a1195ff8db4df756ce44b463a631c76] [Current]
- RMP             [Box-Cox Normality Plot] [Box Cox Normality...] [2008-12-12 12:35:24] [aa5573c1db401b164e448aef050955a1]
- RM              [Variance Reduction Matrix] [VRM Bouwproductie] [2008-12-12 13:22:47] [aa5573c1db401b164e448aef050955a1]
- RMP               [(Partial) Autocorrelation Function] [ACF bouwproductie...] [2008-12-12 13:31:29] [aa5573c1db401b164e448aef050955a1]
-   P                 [(Partial) Autocorrelation Function] [ACF bouwproductie...] [2008-12-12 13:45:52] [aa5573c1db401b164e448aef050955a1]
-   P                   [(Partial) Autocorrelation Function] [ACF bouwproductie...] [2008-12-12 13:59:06] [aa5573c1db401b164e448aef050955a1]
- RM              [Spectral Analysis] [Spectral Analysis...] [2008-12-12 14:26:07] [aa5573c1db401b164e448aef050955a1]
- RM              [Spectral Analysis] [Spectral Analysis...] [2008-12-12 14:42:38] [aa5573c1db401b164e448aef050955a1]
-    D            [Standard Deviation-Mean Plot] [SDMP Totale Produ...] [2008-12-12 15:57:50] [aa5573c1db401b164e448aef050955a1]
- RM                [Variance Reduction Matrix] [VRM Totale Productie] [2008-12-12 16:00:44] [aa5573c1db401b164e448aef050955a1]
- RMPD              [Cross Correlation Function] [CCF Bouwproductie...] [2008-12-12 16:06:05] [aa5573c1db401b164e448aef050955a1]
-   P                 [Cross Correlation Function] [CCF Bouwproductie...] [2008-12-12 16:12:34] [aa5573c1db401b164e448aef050955a1]
Feedback Forum

Post a new message
Dataseries X:
82.7
88.9
105.9
100.8
94
105
58.5
87.6
113.1
112.5
89.6
74.5
82.7
90.1
109.4
96
89.2
109.1
49.1
92.9
107.7
103.5
91.1
79.8
71.9
82.9
90.1
100.7
90.7
108.8
44.1
93.6
107.4
96.5
93.6
76.5
76.7
84
103.3
88.5
99
105.9
44.7
94
107.1
104.8
102.5
77.7
85.2
91.3
106.5
92.4
97.5
107
51.1
98.6
102.2
114.3
99.4
72.5
92.3
99.4
85.9
109.4
97.6




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'George Udny Yule' @ 72.249.76.132

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 1 seconds \tabularnewline
R Server & 'George Udny Yule' @ 72.249.76.132 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=32610&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]1 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'George Udny Yule' @ 72.249.76.132[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=32610&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=32610&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'George Udny Yule' @ 72.249.76.132







Standard Deviation-Mean Plot
SectionMeanStandard DeviationRange
192.758333333333316.10174797588154.6
291.716666666666716.727105565699760.3
388.066666666666717.739495397831864.7
490.683333333333318.109055159998862.4
593.166666666666717.18552950136963.2

\begin{tabular}{lllllllll}
\hline
Standard Deviation-Mean Plot \tabularnewline
Section & Mean & Standard Deviation & Range \tabularnewline
1 & 92.7583333333333 & 16.101747975881 & 54.6 \tabularnewline
2 & 91.7166666666667 & 16.7271055656997 & 60.3 \tabularnewline
3 & 88.0666666666667 & 17.7394953978318 & 64.7 \tabularnewline
4 & 90.6833333333333 & 18.1090551599988 & 62.4 \tabularnewline
5 & 93.1666666666667 & 17.185529501369 & 63.2 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=32610&T=1

[TABLE]
[ROW][C]Standard Deviation-Mean Plot[/C][/ROW]
[ROW][C]Section[/C][C]Mean[/C][C]Standard Deviation[/C][C]Range[/C][/ROW]
[ROW][C]1[/C][C]92.7583333333333[/C][C]16.101747975881[/C][C]54.6[/C][/ROW]
[ROW][C]2[/C][C]91.7166666666667[/C][C]16.7271055656997[/C][C]60.3[/C][/ROW]
[ROW][C]3[/C][C]88.0666666666667[/C][C]17.7394953978318[/C][C]64.7[/C][/ROW]
[ROW][C]4[/C][C]90.6833333333333[/C][C]18.1090551599988[/C][C]62.4[/C][/ROW]
[ROW][C]5[/C][C]93.1666666666667[/C][C]17.185529501369[/C][C]63.2[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=32610&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=32610&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Standard Deviation-Mean Plot
SectionMeanStandard DeviationRange
192.758333333333316.10174797588154.6
291.716666666666716.727105565699760.3
388.066666666666717.739495397831864.7
490.683333333333318.109055159998862.4
593.166666666666717.18552950136963.2







Regression: S.E.(k) = alpha + beta * Mean(k)
alpha39.8784594614256
beta-0.248754243335617
S.D.0.174352583679078
T-STAT-1.42673104170046
p-value0.248926256845782

\begin{tabular}{lllllllll}
\hline
Regression: S.E.(k) = alpha + beta * Mean(k) \tabularnewline
alpha & 39.8784594614256 \tabularnewline
beta & -0.248754243335617 \tabularnewline
S.D. & 0.174352583679078 \tabularnewline
T-STAT & -1.42673104170046 \tabularnewline
p-value & 0.248926256845782 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=32610&T=2

[TABLE]
[ROW][C]Regression: S.E.(k) = alpha + beta * Mean(k)[/C][/ROW]
[ROW][C]alpha[/C][C]39.8784594614256[/C][/ROW]
[ROW][C]beta[/C][C]-0.248754243335617[/C][/ROW]
[ROW][C]S.D.[/C][C]0.174352583679078[/C][/ROW]
[ROW][C]T-STAT[/C][C]-1.42673104170046[/C][/ROW]
[ROW][C]p-value[/C][C]0.248926256845782[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=32610&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=32610&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Regression: S.E.(k) = alpha + beta * Mean(k)
alpha39.8784594614256
beta-0.248754243335617
S.D.0.174352583679078
T-STAT-1.42673104170046
p-value0.248926256845782







Regression: ln S.E.(k) = alpha + beta * ln Mean(k)
alpha8.76174595071042
beta-1.31140395864577
S.D.0.926820594516995
T-STAT-1.41494909198603
p-value0.252020928335142
Lambda2.31140395864577

\begin{tabular}{lllllllll}
\hline
Regression: ln S.E.(k) = alpha + beta * ln Mean(k) \tabularnewline
alpha & 8.76174595071042 \tabularnewline
beta & -1.31140395864577 \tabularnewline
S.D. & 0.926820594516995 \tabularnewline
T-STAT & -1.41494909198603 \tabularnewline
p-value & 0.252020928335142 \tabularnewline
Lambda & 2.31140395864577 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=32610&T=3

[TABLE]
[ROW][C]Regression: ln S.E.(k) = alpha + beta * ln Mean(k)[/C][/ROW]
[ROW][C]alpha[/C][C]8.76174595071042[/C][/ROW]
[ROW][C]beta[/C][C]-1.31140395864577[/C][/ROW]
[ROW][C]S.D.[/C][C]0.926820594516995[/C][/ROW]
[ROW][C]T-STAT[/C][C]-1.41494909198603[/C][/ROW]
[ROW][C]p-value[/C][C]0.252020928335142[/C][/ROW]
[ROW][C]Lambda[/C][C]2.31140395864577[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=32610&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=32610&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Regression: ln S.E.(k) = alpha + beta * ln Mean(k)
alpha8.76174595071042
beta-1.31140395864577
S.D.0.926820594516995
T-STAT-1.41494909198603
p-value0.252020928335142
Lambda2.31140395864577



Parameters (Session):
par1 = 12 ;
Parameters (R input):
par1 = 12 ;
R code (references can be found in the software module):
par1 <- as.numeric(par1)
(n <- length(x))
(np <- floor(n / par1))
arr <- array(NA,dim=c(par1,np))
j <- 0
k <- 1
for (i in 1:(np*par1))
{
j = j + 1
arr[j,k] <- x[i]
if (j == par1) {
j = 0
k=k+1
}
}
arr
arr.mean <- array(NA,dim=np)
arr.sd <- array(NA,dim=np)
arr.range <- array(NA,dim=np)
for (j in 1:np)
{
arr.mean[j] <- mean(arr[,j],na.rm=TRUE)
arr.sd[j] <- sd(arr[,j],na.rm=TRUE)
arr.range[j] <- max(arr[,j],na.rm=TRUE) - min(arr[,j],na.rm=TRUE)
}
arr.mean
arr.sd
arr.range
(lm1 <- lm(arr.sd~arr.mean))
(lnlm1 <- lm(log(arr.sd)~log(arr.mean)))
(lm2 <- lm(arr.range~arr.mean))
bitmap(file='test1.png')
plot(arr.mean,arr.sd,main='Standard Deviation-Mean Plot',xlab='mean',ylab='standard deviation')
dev.off()
bitmap(file='test2.png')
plot(arr.mean,arr.range,main='Range-Mean Plot',xlab='mean',ylab='range')
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Standard Deviation-Mean Plot',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Section',header=TRUE)
a<-table.element(a,'Mean',header=TRUE)
a<-table.element(a,'Standard Deviation',header=TRUE)
a<-table.element(a,'Range',header=TRUE)
a<-table.row.end(a)
for (j in 1:np) {
a<-table.row.start(a)
a<-table.element(a,j,header=TRUE)
a<-table.element(a,arr.mean[j])
a<-table.element(a,arr.sd[j] )
a<-table.element(a,arr.range[j] )
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Regression: S.E.(k) = alpha + beta * Mean(k)',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'alpha',header=TRUE)
a<-table.element(a,lm1$coefficients[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'beta',header=TRUE)
a<-table.element(a,lm1$coefficients[[2]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,summary(lm1)$coefficients[2,2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,summary(lm1)$coefficients[2,3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=TRUE)
a<-table.element(a,summary(lm1)$coefficients[2,4])
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Regression: ln S.E.(k) = alpha + beta * ln Mean(k)',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'alpha',header=TRUE)
a<-table.element(a,lnlm1$coefficients[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'beta',header=TRUE)
a<-table.element(a,lnlm1$coefficients[[2]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,summary(lnlm1)$coefficients[2,2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,summary(lnlm1)$coefficients[2,3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=TRUE)
a<-table.element(a,summary(lnlm1)$coefficients[2,4])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Lambda',header=TRUE)
a<-table.element(a,1-lnlm1$coefficients[[2]])
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable2.tab')