R version 2.8.0 (2008-10-20) Copyright (C) 2008 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- c(10070,10137,9984,9732,9103,9155,9308,9394,9948,10177,10002,9728,10002,10063,10018,9960,10236,10893,10756,10940,10997,10827,10166,10186,10457,10368,10244,10511,10812,10738,10171,9721,9897,9828,9924,10371,10846,10413,10709,10662,10570,10297,10635,10872,10296,10383,10431,10574,10653,10805,10872,10625,10407,10463,10556,10646,10702,11353,11346,11451,11964,12574,13031,13812,14544,14931,14886,16005,17064,15168,16050,15839,15137,14954,15648,15305,15579,16348,15928,16171,15937,15713,15594,15683,16438,17032,17696,17745,19394,20148,20108,18584,18441,18391,19178,18079,18483,19644,19195) > par10 = 'FALSE' > par9 = '1' > par8 = '2' > par7 = '1' > par6 = '3' > par5 = '12' > par4 = '0' > par3 = '1' > par2 = '1' > par1 = '12' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: AUTHOR(S), (YEAR), YOUR SOFTWARE TITLE (vNUMBER) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_YOURPAGE.wasp/ > #Source of accompanying publication: Office for Research, Development, and Education > #Technical description: Write here your technical program description (don't use hard returns!) > par1 <- as.numeric(par1) #cut off periods > par2 <- as.numeric(par2) #lambda > par3 <- as.numeric(par3) #degree of non-seasonal differencing > par4 <- as.numeric(par4) #degree of seasonal differencing > par5 <- as.numeric(par5) #seasonal period > par6 <- as.numeric(par6) #p > par7 <- as.numeric(par7) #q > par8 <- as.numeric(par8) #P > par9 <- as.numeric(par9) #Q > if (par10 == 'TRUE') par10 <- TRUE > if (par10 == 'FALSE') par10 <- FALSE > if (par2 == 0) x <- log(x) > if (par2 != 0) x <- x^par2 > lx <- length(x) > first <- lx - 2*par1 > nx <- lx - par1 > nx1 <- nx + 1 > fx <- lx - nx > if (fx < 1) { + fx <- par5 + nx1 <- lx + fx - 1 + first <- lx - 2*fx + } > first <- 1 > if (fx < 3) fx <- round(lx/10,0) > (arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML')) Call: arima(x = x[1:nx], order = c(par6, par3, par7), seasonal = list(order = c(par8, par4, par9), period = par5), include.mean = par10, method = "ML") Coefficients: ar1 ar2 ar3 ma1 sar1 sar2 sma1 0.1328 0.0029 0.3255 -0.0977 -0.0323 -0.1554 -0.0958 s.e. 0.2319 0.1062 0.1083 0.2301 0.6059 0.1709 0.6115 sigma^2 estimated as 178159: log likelihood = -642.49, aic = 1300.99 > (forecast <- predict(arima.out,fx)) $pred Time Series: Start = 88 End = 99 Frequency = 1 [1] 17894.60 17999.75 18141.65 18334.13 18216.59 18182.56 18577.35 18486.37 [9] 18551.07 18588.51 18550.11 18357.37 $se Time Series: Start = 88 End = 99 Frequency = 1 [1] 422.0884 607.5041 750.1771 947.0163 1121.6999 1274.7664 1431.4669 [8] 1578.3097 1713.9336 1845.2056 1969.9969 2088.0073 > (lb <- forecast$pred - 1.96 * forecast$se) Time Series: Start = 88 End = 99 Frequency = 1 [1] 17067.30 16809.04 16671.30 16477.98 16018.06 15684.01 15771.67 15392.88 [9] 15191.76 14971.91 14688.91 14264.88 > (ub <- forecast$pred + 1.96 * forecast$se) Time Series: Start = 88 End = 99 Frequency = 1 [1] 18721.89 19190.46 19612.00 20190.28 20415.12 20681.10 21383.02 21579.86 [9] 21910.38 22205.12 22411.30 22449.87 > if (par2 == 0) { + x <- exp(x) + forecast$pred <- exp(forecast$pred) + lb <- exp(lb) + ub <- exp(ub) + } > if (par2 != 0) { + x <- x^(1/par2) + forecast$pred <- forecast$pred^(1/par2) + lb <- lb^(1/par2) + ub <- ub^(1/par2) + } > if (par2 < 0) { + olb <- lb + lb <- ub + ub <- olb + } > (actandfor <- c(x[1:nx], forecast$pred)) [1] 10070.00 10137.00 9984.00 9732.00 9103.00 9155.00 9308.00 9394.00 [9] 9948.00 10177.00 10002.00 9728.00 10002.00 10063.00 10018.00 9960.00 [17] 10236.00 10893.00 10756.00 10940.00 10997.00 10827.00 10166.00 10186.00 [25] 10457.00 10368.00 10244.00 10511.00 10812.00 10738.00 10171.00 9721.00 [33] 9897.00 9828.00 9924.00 10371.00 10846.00 10413.00 10709.00 10662.00 [41] 10570.00 10297.00 10635.00 10872.00 10296.00 10383.00 10431.00 10574.00 [49] 10653.00 10805.00 10872.00 10625.00 10407.00 10463.00 10556.00 10646.00 [57] 10702.00 11353.00 11346.00 11451.00 11964.00 12574.00 13031.00 13812.00 [65] 14544.00 14931.00 14886.00 16005.00 17064.00 15168.00 16050.00 15839.00 [73] 15137.00 14954.00 15648.00 15305.00 15579.00 16348.00 15928.00 16171.00 [81] 15937.00 15713.00 15594.00 15683.00 16438.00 17032.00 17696.00 17894.60 [89] 17999.75 18141.65 18334.13 18216.59 18182.56 18577.35 18486.37 18551.07 [97] 18588.51 18550.11 18357.37 > (perc.se <- (ub-forecast$pred)/1.96/forecast$pred) Time Series: Start = 88 End = 99 Frequency = 1 [1] 0.02358748 0.03375070 0.04135110 0.05165319 0.06157573 0.07010931 [7] 0.07705444 0.08537694 0.09239001 0.09926591 0.10619868 0.11374217 > postscript(file="/var/www/html/rcomp/tmp/10jjx1229293192.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mar=c(4,4,2,2),las=1) > ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub)) > plot(x,ylim=ylim,type='n',xlim=c(first,lx)) > usr <- par('usr') > rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon') > rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender') > abline(h= (-3:3)*2 , col ='gray', lty =3) > polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA) > lines(nx1:lx, lb , lty=2) > lines(nx1:lx, ub , lty=2) > lines(x, lwd=2) > lines(nx1:lx, forecast$pred , lwd=2 , col ='white') > box() > par(opar) > dev.off() null device 1 > prob.dec <- array(NA, dim=fx) > prob.sdec <- array(NA, dim=fx) > prob.ldec <- array(NA, dim=fx) > prob.pval <- array(NA, dim=fx) > perf.pe <- array(0, dim=fx) > perf.mape <- array(0, dim=fx) > perf.se <- array(0, dim=fx) > perf.mse <- array(0, dim=fx) > perf.rmse <- array(0, dim=fx) > for (i in 1:fx) { + locSD <- (ub[i] - forecast$pred[i]) / 1.96 + perf.pe[i] = (x[nx+i] - forecast$pred[i]) / forecast$pred[i] + perf.mape[i] = perf.mape[i] + abs(perf.pe[i]) + perf.se[i] = (x[nx+i] - forecast$pred[i])^2 + perf.mse[i] = perf.mse[i] + perf.se[i] + prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD) + prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD) + prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD) + prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD) + } > perf.mape = perf.mape / fx > perf.mse = perf.mse / fx > perf.rmse = sqrt(perf.mse) > postscript(file="/var/www/html/rcomp/tmp/2eeis1229293192.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub))) > dum <- forecast$pred > dum[1:12] <- x[(nx+1):lx] > lines(dum, lty=1) > lines(ub,lty=3) > lines(lb,lty=3) > dev.off() null device 1 > > #Note: the /var/www/html/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/www/html/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'Y[t]',1,header=TRUE) > a<-table.element(a,'F[t]',1,header=TRUE) > a<-table.element(a,'95% LB',1,header=TRUE) > a<-table.element(a,'95% UB',1,header=TRUE) > a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE) > mylab <- paste('P(F[t]>Y[',nx,sep='') > mylab <- paste(mylab,'])',sep='') > a<-table.element(a,mylab,1,header=TRUE) > a<-table.row.end(a) > for (i in (nx-par5):nx) { + a<-table.row.start(a) + a<-table.element(a,i,header=TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.row.end(a) + } > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(x[nx+i],4)) + a<-table.element(a,round(forecast$pred[i],4)) + a<-table.element(a,round(lb[i],4)) + a<-table.element(a,round(ub[i],4)) + a<-table.element(a,round((1-prob.pval[i]),4)) + a<-table.element(a,round((1-prob.dec[i]),4)) + a<-table.element(a,round((1-prob.sdec[i]),4)) + a<-table.element(a,round((1-prob.ldec[i]),4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/32ek71229293193.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',7,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'% S.E.',1,header=TRUE) > a<-table.element(a,'PE',1,header=TRUE) > a<-table.element(a,'MAPE',1,header=TRUE) > a<-table.element(a,'Sq.E',1,header=TRUE) > a<-table.element(a,'MSE',1,header=TRUE) > a<-table.element(a,'RMSE',1,header=TRUE) > a<-table.row.end(a) > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(perc.se[i],4)) + a<-table.element(a,round(perf.pe[i],4)) + a<-table.element(a,round(perf.mape[i],4)) + a<-table.element(a,round(perf.se[i],4)) + a<-table.element(a,round(perf.mse[i],4)) + a<-table.element(a,round(perf.rmse[i],4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/4qkbk1229293193.tab") > > system("convert tmp/10jjx1229293192.ps tmp/10jjx1229293192.png") > system("convert tmp/2eeis1229293192.ps tmp/2eeis1229293192.png") > > > proc.time() user system elapsed 1.742 0.545 2.352