R version 2.7.0 (2008-04-22) Copyright (C) 2008 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- c(105.2,91.5,75.3,60.5,80.4,84.5,93.9,78,92.3,90,72.1,76.9,76,88.7,55.4,46.6,90.9,84.9,89,90.2,72.3,83,71.6,75.4,85.1,81.2,68.7,68.4,93.7,96.6,101.8,93.6,88.9,114.1,82.3,96.4,104,88.2,85.2,87.1,85.5,89.1,105.2,82.9,86.8,112,97.4,88.9,109.4,87.8,90.5,79.3,114.9,118.8,125,96.1,116.7,119.5,104.1,121,127.3,117.7,108,89.4,137.4,142,137.3,122.8,126.1,147.6,115.7,139.2,151.2,123.8,109,112.1,136.4,135.5,138.7,137.5,141.5,143.6,146.5,200.7,196.2) > par10 = 'FALSE' > par9 = '0' > par8 = '2' > par7 = '0' > par6 = '3' > par5 = '12' > par4 = '1' > par3 = '0' > par2 = '0.1' > par1 = '12' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: AUTHOR(S), (YEAR), YOUR SOFTWARE TITLE (vNUMBER) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_YOURPAGE.wasp/ > #Source of accompanying publication: Office for Research, Development, and Education > #Technical description: Write here your technical program description (don't use hard returns!) > par1 <- as.numeric(par1) #cut off periods > par2 <- as.numeric(par2) #lambda > par3 <- as.numeric(par3) #degree of non-seasonal differencing > par4 <- as.numeric(par4) #degree of seasonal differencing > par5 <- as.numeric(par5) #seasonal period > par6 <- as.numeric(par6) #p > par7 <- as.numeric(par7) #q > par8 <- as.numeric(par8) #P > par9 <- as.numeric(par9) #Q > if (par10 == 'TRUE') par10 <- TRUE > if (par10 == 'FALSE') par10 <- FALSE > if (par2 == 0) x <- log(x) > if (par2 != 0) x <- x^par2 > lx <- length(x) > first <- lx - 2*par1 > nx <- lx - par1 > nx1 <- nx + 1 > fx <- lx - nx > if (fx < 1) { + fx <- par5 + nx1 <- lx + fx - 1 + first <- lx - 2*fx + } > first <- 1 > if (fx < 3) fx <- round(lx/10,0) > (arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML')) Call: arima(x = x[1:nx], order = c(par6, par3, par7), seasonal = list(order = c(par8, par4, par9), period = par5), include.mean = par10, method = "ML") Coefficients: ar1 ar2 ar3 sar1 sar2 0.2359 0.2706 0.4292 -0.4042 -0.5427 s.e. 0.1150 0.1160 0.1151 0.1255 0.1209 sigma^2 estimated as 0.0002621: log likelihood = 159.76, aic = -307.52 > (forecast <- predict(arima.out,fx)) $pred Time Series: Start = 74 End = 85 Frequency = 1 [1] 1.627416 1.615737 1.603525 1.631867 1.637429 1.646719 1.619859 1.621343 [9] 1.657249 1.623606 1.629602 1.653598 $se Time Series: Start = 74 End = 85 Frequency = 1 [1] 0.01619043 0.01663477 0.01745313 0.01974232 0.02042711 0.02129025 [7] 0.02234821 0.02300963 0.02370651 0.02439245 0.02495092 0.02549545 > (lb <- forecast$pred - 1.96 * forecast$se) Time Series: Start = 74 End = 85 Frequency = 1 [1] 1.595683 1.583133 1.569316 1.593172 1.597392 1.604990 1.576056 1.576244 [9] 1.610784 1.575797 1.580698 1.603627 > (ub <- forecast$pred + 1.96 * forecast$se) Time Series: Start = 74 End = 85 Frequency = 1 [1] 1.659149 1.648341 1.637733 1.670562 1.677466 1.688448 1.663661 1.666442 [9] 1.703714 1.671415 1.678505 1.703569 > if (par2 == 0) { + x <- exp(x) + forecast$pred <- exp(forecast$pred) + lb <- exp(lb) + ub <- exp(ub) + } > if (par2 != 0) { + x <- x^(1/par2) + forecast$pred <- forecast$pred^(1/par2) + lb <- lb^(1/par2) + ub <- ub^(1/par2) + } > if (par2 < 0) { + olb <- lb + lb <- ub + ub <- olb + } > (actandfor <- c(x[1:nx], forecast$pred)) [1] 105.2000 91.5000 75.3000 60.5000 80.4000 84.5000 93.9000 78.0000 [9] 92.3000 90.0000 72.1000 76.9000 76.0000 88.7000 55.4000 46.6000 [17] 90.9000 84.9000 89.0000 90.2000 72.3000 83.0000 71.6000 75.4000 [25] 85.1000 81.2000 68.7000 68.4000 93.7000 96.6000 101.8000 93.6000 [33] 88.9000 114.1000 82.3000 96.4000 104.0000 88.2000 85.2000 87.1000 [41] 85.5000 89.1000 105.2000 82.9000 86.8000 112.0000 97.4000 88.9000 [49] 109.4000 87.8000 90.5000 79.3000 114.9000 118.8000 125.0000 96.1000 [57] 116.7000 119.5000 104.1000 121.0000 127.3000 117.7000 108.0000 89.4000 [65] 137.4000 142.0000 137.3000 122.8000 126.1000 147.6000 115.7000 139.2000 [73] 151.2000 130.3123 121.2572 112.3973 133.9206 138.5556 146.6209 124.3859 [81] 125.5306 156.2707 127.2934 132.0732 152.8621 > (perc.se <- (ub-forecast$pred)/1.96/forecast$pred) Time Series: Start = 74 End = 85 Frequency = 1 [1] 0.1086847 0.1128248 0.1199083 0.1347401 0.1394120 0.1450739 0.1560217 [8] 0.1610649 0.1625132 0.1717906 0.1755319 0.1769308 > postscript(file="/var/www/html/rcomp/tmp/1hizp1229362323.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mar=c(4,4,2,2),las=1) > ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub)) > plot(x,ylim=ylim,type='n',xlim=c(first,lx)) > usr <- par('usr') > rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon') > rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender') > abline(h= (-3:3)*2 , col ='gray', lty =3) > polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA) > lines(nx1:lx, lb , lty=2) > lines(nx1:lx, ub , lty=2) > lines(x, lwd=2) > lines(nx1:lx, forecast$pred , lwd=2 , col ='white') > box() > par(opar) > dev.off() null device 1 > prob.dec <- array(NA, dim=fx) > prob.sdec <- array(NA, dim=fx) > prob.ldec <- array(NA, dim=fx) > prob.pval <- array(NA, dim=fx) > perf.pe <- array(0, dim=fx) > perf.mape <- array(0, dim=fx) > perf.se <- array(0, dim=fx) > perf.mse <- array(0, dim=fx) > perf.rmse <- array(0, dim=fx) > for (i in 1:fx) { + locSD <- (ub[i] - forecast$pred[i]) / 1.96 + perf.pe[i] = (x[nx+i] - forecast$pred[i]) / forecast$pred[i] + perf.mape[i] = perf.mape[i] + abs(perf.pe[i]) + perf.se[i] = (x[nx+i] - forecast$pred[i])^2 + perf.mse[i] = perf.mse[i] + perf.se[i] + prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD) + prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD) + prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD) + prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD) + } > perf.mape = perf.mape / fx > perf.mse = perf.mse / fx > perf.rmse = sqrt(perf.mse) > postscript(file="/var/www/html/rcomp/tmp/2g7iv1229362323.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub))) > dum <- forecast$pred > dum[1:12] <- x[(nx+1):lx] > lines(dum, lty=1) > lines(ub,lty=3) > lines(lb,lty=3) > dev.off() null device 1 > > #Note: the /var/www/html/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/www/html/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'Y[t]',1,header=TRUE) > a<-table.element(a,'F[t]',1,header=TRUE) > a<-table.element(a,'95% LB',1,header=TRUE) > a<-table.element(a,'95% UB',1,header=TRUE) > a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE) > mylab <- paste('P(F[t]>Y[',nx,sep='') > mylab <- paste(mylab,'])',sep='') > a<-table.element(a,mylab,1,header=TRUE) > a<-table.row.end(a) > for (i in (nx-par5):nx) { + a<-table.row.start(a) + a<-table.element(a,i,header=TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.row.end(a) + } > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(x[nx+i],4)) + a<-table.element(a,round(forecast$pred[i],4)) + a<-table.element(a,round(lb[i],4)) + a<-table.element(a,round(ub[i],4)) + a<-table.element(a,round((1-prob.pval[i]),4)) + a<-table.element(a,round((1-prob.dec[i]),4)) + a<-table.element(a,round((1-prob.sdec[i]),4)) + a<-table.element(a,round((1-prob.ldec[i]),4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/3w74b1229362323.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',7,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'% S.E.',1,header=TRUE) > a<-table.element(a,'PE',1,header=TRUE) > a<-table.element(a,'MAPE',1,header=TRUE) > a<-table.element(a,'Sq.E',1,header=TRUE) > a<-table.element(a,'MSE',1,header=TRUE) > a<-table.element(a,'RMSE',1,header=TRUE) > a<-table.row.end(a) > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(perc.se[i],4)) + a<-table.element(a,round(perf.pe[i],4)) + a<-table.element(a,round(perf.mape[i],4)) + a<-table.element(a,round(perf.se[i],4)) + a<-table.element(a,round(perf.mse[i],4)) + a<-table.element(a,round(perf.rmse[i],4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/4jgts1229362323.tab") > > system("convert tmp/1hizp1229362323.ps tmp/1hizp1229362323.png") > system("convert tmp/2g7iv1229362323.ps tmp/2g7iv1229362323.png") > > > proc.time() user system elapsed 2.870 0.678 3.108