R version 2.8.0 (2008-10-20)
Copyright (C) 2008 The R Foundation for Statistical Computing
ISBN 3-900051-07-0
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> x <- array(list(111.8
+ ,142
+ ,129.5
+ ,100.9
+ ,109
+ ,103.7
+ ,102.1
+ ,120.7
+ ,114.2
+ ,118
+ ,159.6
+ ,123.5
+ ,110.6
+ ,142.4
+ ,111.3
+ ,115.1
+ ,145.1
+ ,126.5
+ ,114.8
+ ,148.9
+ ,119.6
+ ,110.1
+ ,136.9
+ ,116.5
+ ,110.8
+ ,119.9
+ ,116.7
+ ,95.6
+ ,133.9
+ ,119.4
+ ,108.1
+ ,131
+ ,124
+ ,116
+ ,133.2
+ ,130.6
+ ,111.2
+ ,135
+ ,120.1
+ ,98.2
+ ,99.1
+ ,113.2
+ ,97.6
+ ,110.8
+ ,111.1
+ ,113.3
+ ,152.3
+ ,126
+ ,107
+ ,131.9
+ ,115.8
+ ,107.9
+ ,127.9
+ ,111
+ ,117.5
+ ,142
+ ,128.7
+ ,105.4
+ ,118.7
+ ,112.6
+ ,104.2
+ ,116.3
+ ,114.7
+ ,98
+ ,125.7
+ ,118.5
+ ,106.7
+ ,122.7
+ ,124.8
+ ,113.4
+ ,125.3
+ ,128.6
+ ,111.7
+ ,123.2
+ ,127
+ ,94.2
+ ,88.8
+ ,111.8
+ ,92.5
+ ,94.9
+ ,100.6
+ ,109.8
+ ,136.8
+ ,122.9
+ ,105.1
+ ,128.7
+ ,117.8
+ ,104.4
+ ,110.8
+ ,108.1
+ ,111.1
+ ,132.8
+ ,129.6
+ ,98.7
+ ,112
+ ,111.4
+ ,100.5
+ ,104.5
+ ,110
+ ,93.7
+ ,112
+ ,115.2
+ ,103.2
+ ,110.6
+ ,118.8
+ ,104.1
+ ,107.2
+ ,116.2
+ ,106.9
+ ,116.2
+ ,126.3
+ ,89.2
+ ,85.7
+ ,106.7
+ ,88.7
+ ,94.2
+ ,96.5
+ ,110.7
+ ,127.2
+ ,119.1
+ ,98.8
+ ,108.9
+ ,109.6
+ ,102.5
+ ,111.9
+ ,110.3
+ ,101.8
+ ,126.3
+ ,118.8
+ ,96
+ ,105.9
+ ,104.5
+ ,98.3
+ ,101.3
+ ,107.7
+ ,94
+ ,105.5
+ ,127.7
+ ,105.1
+ ,106.3
+ ,118.5
+ ,114
+ ,117.3
+ ,120.1
+ ,115.5
+ ,110.9
+ ,127.4
+ ,94.3
+ ,85.4
+ ,107.8
+ ,100.8
+ ,81.9
+ ,106.5
+ ,111.2
+ ,121.5
+ ,124.6
+ ,103.4
+ ,106.3
+ ,101.9
+ ,106.7
+ ,111.8
+ ,106.5
+ ,112.2
+ ,122.8
+ ,119.4
+ ,100.7
+ ,101.8
+ ,103.3
+ ,99
+ ,92.2
+ ,99.6
+ ,91.5
+ ,106.3
+ ,120.9
+ ,102.7
+ ,103
+ ,111.7
+ ,111.4
+ ,97.7
+ ,123.9)
+ ,dim=c(3
+ ,60)
+ ,dimnames=list(c('Interm.'
+ ,'Invest.'
+ ,'Cons.')
+ ,1:60))
>  y <- array(NA,dim=c(3,60),dimnames=list(c('Interm.','Invest.','Cons.'),1:60))
>  for (i in 1:dim(x)[1])
+  {
+  	for (j in 1:dim(x)[2])
+  	{
+  		y[i,j] <- as.numeric(x[i,j])
+  	}
+  }
> par3 = 'No Linear Trend'
> par2 = 'Do not include Seasonal Dummies'
> par1 = '3'
> #'GNU S' R Code compiled by R2WASP v. 1.0.44 ()
> #Author: Prof. Dr. P. Wessa
> #To cite this work: AUTHOR(S), (YEAR), YOUR SOFTWARE TITLE (vNUMBER) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_YOURPAGE.wasp/
> #Source of accompanying publication: Office for Research, Development, and Education
> #Technical description: Write here your technical program description (don't use hard returns!)
> library(lattice)
> library(lmtest)
Loading required package: zoo
Attaching package: 'zoo'
	The following object(s) are masked from package:base :
	 as.Date.numeric 
> n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
> par1 <- as.numeric(par1)
> x <- t(y)
> k <- length(x[1,])
> n <- length(x[,1])
> x1 <- cbind(x[,par1], x[,1:k!=par1])
> mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
> colnames(x1) <- mycolnames #colnames(x)[par1]
> x <- x1
> if (par3 == 'First Differences'){
+ x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
+ for (i in 1:n-1) {
+ for (j in 1:k) {
+ x2[i,j] <- x[i+1,j] - x[i,j]
+ }
+ }
+ x <- x2
+ }
> if (par2 == 'Include Monthly Dummies'){
+ x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
+ for (i in 1:11){
+ x2[seq(i,n,12),i] <- 1
+ }
+ x <- cbind(x, x2)
+ }
> if (par2 == 'Include Quarterly Dummies'){
+ x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
+ for (i in 1:3){
+ x2[seq(i,n,4),i] <- 1
+ }
+ x <- cbind(x, x2)
+ }
> k <- length(x[1,])
> if (par3 == 'Linear Trend'){
+ x <- cbind(x, c(1:n))
+ colnames(x)[k+1] <- 't'
+ }
> x
   Cons. Interm. Invest.
1  129.5   111.8   142.0
2  103.7   100.9   109.0
3  114.2   102.1   120.7
4  123.5   118.0   159.6
5  111.3   110.6   142.4
6  126.5   115.1   145.1
7  119.6   114.8   148.9
8  116.5   110.1   136.9
9  116.7   110.8   119.9
10 119.4    95.6   133.9
11 124.0   108.1   131.0
12 130.6   116.0   133.2
13 120.1   111.2   135.0
14 113.2    98.2    99.1
15 111.1    97.6   110.8
16 126.0   113.3   152.3
17 115.8   107.0   131.9
18 111.0   107.9   127.9
19 128.7   117.5   142.0
20 112.6   105.4   118.7
21 114.7   104.2   116.3
22 118.5    98.0   125.7
23 124.8   106.7   122.7
24 128.6   113.4   125.3
25 127.0   111.7   123.2
26 111.8    94.2    88.8
27 100.6    92.5    94.9
28 122.9   109.8   136.8
29 117.8   105.1   128.7
30 108.1   104.4   110.8
31 129.6   111.1   132.8
32 111.4    98.7   112.0
33 110.0   100.5   104.5
34 115.2    93.7   112.0
35 118.8   103.2   110.6
36 116.2   104.1   107.2
37 126.3   106.9   116.2
38 106.7    89.2    85.7
39  96.5    88.7    94.2
40 119.1   110.7   127.2
41 109.6    98.8   108.9
42 110.3   102.5   111.9
43 118.8   101.8   126.3
44 104.5    96.0   105.9
45 107.7    98.3   101.3
46 127.7    94.0   105.5
47 118.5   105.1   106.3
48 120.1   114.0   117.3
49 127.4   115.5   110.9
50 107.8    94.3    85.4
51 106.5   100.8    81.9
52 124.6   111.2   121.5
53 101.9   103.4   106.3
54 106.5   106.7   111.8
55 119.4   112.2   122.8
56 103.3   100.7   101.8
57  99.6    99.0    92.2
58 120.9    91.5   106.3
59 111.7   102.7   103.0
60 123.9   111.4    97.7
> k <- length(x[1,])
> df <- as.data.frame(x)
> (mylm <- lm(df))
Call:
lm(formula = df)
Coefficients:
(Intercept)      Interm.      Invest.  
    47.4205       0.4751       0.1620  
> (mysum <- summary(mylm))
Call:
lm(formula = df)
Residuals:
     Min       1Q   Median       3Q      Max 
-11.8731  -3.9979  -0.5693   4.4833  18.5226 
Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) 47.42046   12.10942   3.916 0.000243 ***
Interm.      0.47512    0.15870   2.994 0.004070 ** 
Invest.      0.16205    0.06852   2.365 0.021461 *  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
Residual standard error: 6.311 on 57 degrees of freedom
Multiple R-squared: 0.4815,	Adjusted R-squared: 0.4633 
F-statistic: 26.47 on 2 and 57 DF,  p-value: 7.406e-09 
> if (n > n25) {
+ kp3 <- k + 3
+ nmkm3 <- n - k - 3
+ gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
+ numgqtests <- 0
+ numsignificant1 <- 0
+ numsignificant5 <- 0
+ numsignificant10 <- 0
+ for (mypoint in kp3:nmkm3) {
+ j <- 0
+ numgqtests <- numgqtests + 1
+ for (myalt in c('greater', 'two.sided', 'less')) {
+ j <- j + 1
+ gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
+ }
+ if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
+ if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
+ if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
+ }
+ gqarr
+ }
             [,1]       [,2]      [,3]
 [1,] 0.837407304 0.32518539 0.1625927
 [2,] 0.766938386 0.46612323 0.2330616
 [3,] 0.664873110 0.67025378 0.3351269
 [4,] 0.545874389 0.90825122 0.4541256
 [5,] 0.539635280 0.92072944 0.4603647
 [6,] 0.549944838 0.90011032 0.4500552
 [7,] 0.667148077 0.66570385 0.3328519
 [8,] 0.574638040 0.85072392 0.4253620
 [9,] 0.505470494 0.98905901 0.4945295
[10,] 0.410314954 0.82062991 0.5896850
[11,] 0.331995144 0.66399029 0.6680049
[12,] 0.276795284 0.55359057 0.7232047
[13,] 0.325314710 0.65062942 0.6746853
[14,] 0.283695459 0.56739092 0.7163045
[15,] 0.239170874 0.47834175 0.7608291
[16,] 0.180954158 0.36190832 0.8190458
[17,] 0.154483525 0.30896705 0.8455165
[18,] 0.176079194 0.35215839 0.8239208
[19,] 0.195674774 0.39134955 0.8043252
[20,] 0.191743924 0.38348785 0.8082561
[21,] 0.167406639 0.33481328 0.8325934
[22,] 0.172775756 0.34555151 0.8272242
[23,] 0.130944601 0.26188920 0.8690554
[24,] 0.096968707 0.19393741 0.9030313
[25,] 0.110251428 0.22050286 0.8897486
[26,] 0.118838195 0.23767639 0.8811618
[27,] 0.086209502 0.17241900 0.9137905
[28,] 0.062286536 0.12457307 0.9377135
[29,] 0.053646336 0.10729267 0.9463537
[30,] 0.041727701 0.08345540 0.9582723
[31,] 0.027647072 0.05529414 0.9723529
[32,] 0.038783835 0.07756767 0.9612162
[33,] 0.027773255 0.05554651 0.9722267
[34,] 0.035960468 0.07192094 0.9640395
[35,] 0.024000913 0.04800183 0.9759991
[36,] 0.016117679 0.03223536 0.9838823
[37,] 0.012289275 0.02457855 0.9877107
[38,] 0.007618015 0.01523603 0.9923820
[39,] 0.007878819 0.01575764 0.9921212
[40,] 0.005268799 0.01053760 0.9947312
[41,] 0.082354172 0.16470834 0.9176458
[42,] 0.061004764 0.12200953 0.9389952
[43,] 0.037271198 0.07454240 0.9627288
[44,] 0.041250533 0.08250107 0.9587495
[45,] 0.025913476 0.05182695 0.9740865
[46,] 0.015623921 0.03124784 0.9843761
[47,] 0.010981527 0.02196305 0.9890185
[48,] 0.020475462 0.04095092 0.9795245
[49,] 0.027306016 0.05461203 0.9726940
> postscript(file="/var/www/html/rcomp/tmp/1cch21229415703.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
> points(x[,1]-mysum$resid)
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/28jcn1229415703.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/3rz3a1229415703.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/4yi241229415703.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/5l0ek1229415703.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
> qqline(mysum$resid)
> grid()
> dev.off()
null device 
          1 
> (myerror <- as.ts(mysum$resid))
Time Series:
Start = 1 
End = 60 
Frequency = 1 
           1            2            3            4            5            6 
  5.95083839  -9.32287220  -1.28894512  -5.84689516 -11.74383741   0.88060638 
           7            8            9           10           11           12 
 -6.49263036  -5.41502868  -2.79284079   4.86032729   3.99127610   6.48133927 
          13           14           15           16           17           18 
 -2.02977300   3.06419701  -0.64666240   0.06909338  -3.83193423  -8.41135959 
          19           20           21           22           23           24 
  2.44266228  -4.13274585  -1.07369468   4.14881447   6.80141856   6.99680592 
          25           26           27           28           29           30 
  6.54480280   5.23373856  -6.14703642   1.14371143  -0.41066375  -6.87746898 
          31           32           33           34           35           36 
  7.87423863  -1.06374729  -2.10362069   5.11184579   4.42508243   1.94842986 
          37           38           39           40           41           42 
  9.25968960   3.01167222  -8.32815393  -1.52825998  -2.40891857  -3.95299350 
          43           44           45           46           47           48 
  2.54613652  -5.69245040  -2.83981462  18.52260497   3.91915205  -0.49190246 
          49           50           51           52           53           54 
  7.13250985   1.73718088  -2.08393140   4.65783920 -11.87314630  -9.73228715 
          55           56           57           58           59           60 
 -1.22793837  -8.46112197  -9.79778498  12.78076523  -1.20581362   7.71949477 
> postscript(file="/var/www/html/rcomp/tmp/6e2gd1229415703.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> dum <- cbind(lag(myerror,k=1),myerror)
> dum
Time Series:
Start = 0 
End = 60 
Frequency = 1 
   lag(myerror, k = 1)      myerror
 0          5.95083839           NA
 1         -9.32287220   5.95083839
 2         -1.28894512  -9.32287220
 3         -5.84689516  -1.28894512
 4        -11.74383741  -5.84689516
 5          0.88060638 -11.74383741
 6         -6.49263036   0.88060638
 7         -5.41502868  -6.49263036
 8         -2.79284079  -5.41502868
 9          4.86032729  -2.79284079
10          3.99127610   4.86032729
11          6.48133927   3.99127610
12         -2.02977300   6.48133927
13          3.06419701  -2.02977300
14         -0.64666240   3.06419701
15          0.06909338  -0.64666240
16         -3.83193423   0.06909338
17         -8.41135959  -3.83193423
18          2.44266228  -8.41135959
19         -4.13274585   2.44266228
20         -1.07369468  -4.13274585
21          4.14881447  -1.07369468
22          6.80141856   4.14881447
23          6.99680592   6.80141856
24          6.54480280   6.99680592
25          5.23373856   6.54480280
26         -6.14703642   5.23373856
27          1.14371143  -6.14703642
28         -0.41066375   1.14371143
29         -6.87746898  -0.41066375
30          7.87423863  -6.87746898
31         -1.06374729   7.87423863
32         -2.10362069  -1.06374729
33          5.11184579  -2.10362069
34          4.42508243   5.11184579
35          1.94842986   4.42508243
36          9.25968960   1.94842986
37          3.01167222   9.25968960
38         -8.32815393   3.01167222
39         -1.52825998  -8.32815393
40         -2.40891857  -1.52825998
41         -3.95299350  -2.40891857
42          2.54613652  -3.95299350
43         -5.69245040   2.54613652
44         -2.83981462  -5.69245040
45         18.52260497  -2.83981462
46          3.91915205  18.52260497
47         -0.49190246   3.91915205
48          7.13250985  -0.49190246
49          1.73718088   7.13250985
50         -2.08393140   1.73718088
51          4.65783920  -2.08393140
52        -11.87314630   4.65783920
53         -9.73228715 -11.87314630
54         -1.22793837  -9.73228715
55         -8.46112197  -1.22793837
56         -9.79778498  -8.46112197
57         12.78076523  -9.79778498
58         -1.20581362  12.78076523
59          7.71949477  -1.20581362
60                  NA   7.71949477
> dum1 <- dum[2:length(myerror),]
> dum1
      lag(myerror, k = 1)      myerror
 [1,]         -9.32287220   5.95083839
 [2,]         -1.28894512  -9.32287220
 [3,]         -5.84689516  -1.28894512
 [4,]        -11.74383741  -5.84689516
 [5,]          0.88060638 -11.74383741
 [6,]         -6.49263036   0.88060638
 [7,]         -5.41502868  -6.49263036
 [8,]         -2.79284079  -5.41502868
 [9,]          4.86032729  -2.79284079
[10,]          3.99127610   4.86032729
[11,]          6.48133927   3.99127610
[12,]         -2.02977300   6.48133927
[13,]          3.06419701  -2.02977300
[14,]         -0.64666240   3.06419701
[15,]          0.06909338  -0.64666240
[16,]         -3.83193423   0.06909338
[17,]         -8.41135959  -3.83193423
[18,]          2.44266228  -8.41135959
[19,]         -4.13274585   2.44266228
[20,]         -1.07369468  -4.13274585
[21,]          4.14881447  -1.07369468
[22,]          6.80141856   4.14881447
[23,]          6.99680592   6.80141856
[24,]          6.54480280   6.99680592
[25,]          5.23373856   6.54480280
[26,]         -6.14703642   5.23373856
[27,]          1.14371143  -6.14703642
[28,]         -0.41066375   1.14371143
[29,]         -6.87746898  -0.41066375
[30,]          7.87423863  -6.87746898
[31,]         -1.06374729   7.87423863
[32,]         -2.10362069  -1.06374729
[33,]          5.11184579  -2.10362069
[34,]          4.42508243   5.11184579
[35,]          1.94842986   4.42508243
[36,]          9.25968960   1.94842986
[37,]          3.01167222   9.25968960
[38,]         -8.32815393   3.01167222
[39,]         -1.52825998  -8.32815393
[40,]         -2.40891857  -1.52825998
[41,]         -3.95299350  -2.40891857
[42,]          2.54613652  -3.95299350
[43,]         -5.69245040   2.54613652
[44,]         -2.83981462  -5.69245040
[45,]         18.52260497  -2.83981462
[46,]          3.91915205  18.52260497
[47,]         -0.49190246   3.91915205
[48,]          7.13250985  -0.49190246
[49,]          1.73718088   7.13250985
[50,]         -2.08393140   1.73718088
[51,]          4.65783920  -2.08393140
[52,]        -11.87314630   4.65783920
[53,]         -9.73228715 -11.87314630
[54,]         -1.22793837  -9.73228715
[55,]         -8.46112197  -1.22793837
[56,]         -9.79778498  -8.46112197
[57,]         12.78076523  -9.79778498
[58,]         -1.20581362  12.78076523
[59,]          7.71949477  -1.20581362
> z <- as.data.frame(dum1)
> z
   lag(myerror, k = 1)      myerror
1          -9.32287220   5.95083839
2          -1.28894512  -9.32287220
3          -5.84689516  -1.28894512
4         -11.74383741  -5.84689516
5           0.88060638 -11.74383741
6          -6.49263036   0.88060638
7          -5.41502868  -6.49263036
8          -2.79284079  -5.41502868
9           4.86032729  -2.79284079
10          3.99127610   4.86032729
11          6.48133927   3.99127610
12         -2.02977300   6.48133927
13          3.06419701  -2.02977300
14         -0.64666240   3.06419701
15          0.06909338  -0.64666240
16         -3.83193423   0.06909338
17         -8.41135959  -3.83193423
18          2.44266228  -8.41135959
19         -4.13274585   2.44266228
20         -1.07369468  -4.13274585
21          4.14881447  -1.07369468
22          6.80141856   4.14881447
23          6.99680592   6.80141856
24          6.54480280   6.99680592
25          5.23373856   6.54480280
26         -6.14703642   5.23373856
27          1.14371143  -6.14703642
28         -0.41066375   1.14371143
29         -6.87746898  -0.41066375
30          7.87423863  -6.87746898
31         -1.06374729   7.87423863
32         -2.10362069  -1.06374729
33          5.11184579  -2.10362069
34          4.42508243   5.11184579
35          1.94842986   4.42508243
36          9.25968960   1.94842986
37          3.01167222   9.25968960
38         -8.32815393   3.01167222
39         -1.52825998  -8.32815393
40         -2.40891857  -1.52825998
41         -3.95299350  -2.40891857
42          2.54613652  -3.95299350
43         -5.69245040   2.54613652
44         -2.83981462  -5.69245040
45         18.52260497  -2.83981462
46          3.91915205  18.52260497
47         -0.49190246   3.91915205
48          7.13250985  -0.49190246
49          1.73718088   7.13250985
50         -2.08393140   1.73718088
51          4.65783920  -2.08393140
52        -11.87314630   4.65783920
53         -9.73228715 -11.87314630
54         -1.22793837  -9.73228715
55         -8.46112197  -1.22793837
56         -9.79778498  -8.46112197
57         12.78076523  -9.79778498
58         -1.20581362  12.78076523
59          7.71949477  -1.20581362
> plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
> lines(lowess(z))
> abline(lm(z))
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/7t77n1229415703.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/8ja361229415703.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/9ygv41229415703.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
> plot(mylm, las = 1, sub='Residual Diagnostics')
> par(opar)
> dev.off()
null device 
          1 
> if (n > n25) {
+ postscript(file="/var/www/html/rcomp/tmp/10kmm31229415703.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
+ plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
+ grid()
+ dev.off()
+ }
null device 
          1 
> 
> #Note: the /var/www/html/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab
> load(file="/var/www/html/rcomp/createtable")
> 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
> a<-table.row.end(a)
> myeq <- colnames(x)[1]
> myeq <- paste(myeq, '[t] = ', sep='')
> for (i in 1:k){
+ if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
+ myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
+ if (rownames(mysum$coefficients)[i] != '(Intercept)') {
+ myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
+ if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
+ }
+ }
> myeq <- paste(myeq, ' + e[t]')
> a<-table.row.start(a)
> a<-table.element(a, myeq)
> a<-table.row.end(a)
> a<-table.end(a)
> table.save(a,file="/var/www/html/rcomp/tmp/11z1lu1229415703.tab") 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a,'Variable',header=TRUE)
> a<-table.element(a,'Parameter',header=TRUE)
> a<-table.element(a,'S.D.',header=TRUE)
> a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
> a<-table.element(a,'2-tail p-value',header=TRUE)
> a<-table.element(a,'1-tail p-value',header=TRUE)
> a<-table.row.end(a)
> for (i in 1:k){
+ a<-table.row.start(a)
+ a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
+ a<-table.element(a,mysum$coefficients[i,1])
+ a<-table.element(a, round(mysum$coefficients[i,2],6))
+ a<-table.element(a, round(mysum$coefficients[i,3],4))
+ a<-table.element(a, round(mysum$coefficients[i,4],6))
+ a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
+ a<-table.row.end(a)
+ }
> a<-table.end(a)
> table.save(a,file="/var/www/html/rcomp/tmp/120azi1229415704.tab") 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple R',1,TRUE)
> a<-table.element(a, sqrt(mysum$r.squared))
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'R-squared',1,TRUE)
> a<-table.element(a, mysum$r.squared)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Adjusted R-squared',1,TRUE)
> a<-table.element(a, mysum$adj.r.squared)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'F-TEST (value)',1,TRUE)
> a<-table.element(a, mysum$fstatistic[1])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
> a<-table.element(a, mysum$fstatistic[2])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
> a<-table.element(a, mysum$fstatistic[3])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'p-value',1,TRUE)
> a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
> a<-table.element(a, mysum$sigma)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
> a<-table.element(a, sum(myerror*myerror))
> a<-table.row.end(a)
> a<-table.end(a)
> table.save(a,file="/var/www/html/rcomp/tmp/13d8wk1229415704.tab") 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Time or Index', 1, TRUE)
> a<-table.element(a, 'Actuals', 1, TRUE)
> a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
> a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
> a<-table.row.end(a)
> for (i in 1:n) {
+ a<-table.row.start(a)
+ a<-table.element(a,i, 1, TRUE)
+ a<-table.element(a,x[i])
+ a<-table.element(a,x[i]-mysum$resid[i])
+ a<-table.element(a,mysum$resid[i])
+ a<-table.row.end(a)
+ }
> a<-table.end(a)
> table.save(a,file="/var/www/html/rcomp/tmp/147rq21229415704.tab") 
> if (n > n25) {
+ a<-table.start()
+ a<-table.row.start(a)
+ a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'p-values',header=TRUE)
+ a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'breakpoint index',header=TRUE)
+ a<-table.element(a,'greater',header=TRUE)
+ a<-table.element(a,'2-sided',header=TRUE)
+ a<-table.element(a,'less',header=TRUE)
+ a<-table.row.end(a)
+ for (mypoint in kp3:nmkm3) {
+ a<-table.row.start(a)
+ a<-table.element(a,mypoint,header=TRUE)
+ a<-table.element(a,gqarr[mypoint-kp3+1,1])
+ a<-table.element(a,gqarr[mypoint-kp3+1,2])
+ a<-table.element(a,gqarr[mypoint-kp3+1,3])
+ a<-table.row.end(a)
+ }
+ a<-table.end(a)
+ table.save(a,file="/var/www/html/rcomp/tmp/15o9le1229415704.tab") 
+ a<-table.start()
+ a<-table.row.start(a)
+ a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'Description',header=TRUE)
+ a<-table.element(a,'# significant tests',header=TRUE)
+ a<-table.element(a,'% significant tests',header=TRUE)
+ a<-table.element(a,'OK/NOK',header=TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'1% type I error level',header=TRUE)
+ a<-table.element(a,numsignificant1)
+ a<-table.element(a,numsignificant1/numgqtests)
+ if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
+ a<-table.element(a,dum)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'5% type I error level',header=TRUE)
+ a<-table.element(a,numsignificant5)
+ a<-table.element(a,numsignificant5/numgqtests)
+ if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
+ a<-table.element(a,dum)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'10% type I error level',header=TRUE)
+ a<-table.element(a,numsignificant10)
+ a<-table.element(a,numsignificant10/numgqtests)
+ if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
+ a<-table.element(a,dum)
+ a<-table.row.end(a)
+ a<-table.end(a)
+ table.save(a,file="/var/www/html/rcomp/tmp/16uyjq1229415704.tab") 
+ }
> 
> system("convert tmp/1cch21229415703.ps tmp/1cch21229415703.png")
> system("convert tmp/28jcn1229415703.ps tmp/28jcn1229415703.png")
> system("convert tmp/3rz3a1229415703.ps tmp/3rz3a1229415703.png")
> system("convert tmp/4yi241229415703.ps tmp/4yi241229415703.png")
> system("convert tmp/5l0ek1229415703.ps tmp/5l0ek1229415703.png")
> system("convert tmp/6e2gd1229415703.ps tmp/6e2gd1229415703.png")
> system("convert tmp/7t77n1229415703.ps tmp/7t77n1229415703.png")
> system("convert tmp/8ja361229415703.ps tmp/8ja361229415703.png")
> system("convert tmp/9ygv41229415703.ps tmp/9ygv41229415703.png")
> system("convert tmp/10kmm31229415703.ps tmp/10kmm31229415703.png")
> 
> 
> proc.time()
   user  system elapsed 
  2.554   1.611   3.092