R version 2.8.0 (2008-10-20) Copyright (C) 2008 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- c(101.0,98.7,105.1,98.4,101.7,102.9,92.2,94.9,92.8,98.5,94.3,87.4,103.4,101.2,109.6,111.9,108.9,105.6,107.8,97.5,102.4,105.6,99.8,96.2,113.1,107.4,116.8,112.9,105.3,109.3,107.9,101.1,114.7,116.2,108.4,113.4,108.7,112.6,124.2,114.9,110.5,121.5,118.1,111.7,132.7,119.0,116.7,120.1,113.4,106.6,116.3,112.6,111.6,125.1,110.7,109.6,114.2,113.4,116.0,109.6,117.8,115.8,125.3,113.0,120.5,116.6,111.8,115.2,118.6,122.4,116.4,114.5,119.8,115.8,127.8,118.8,119.7,118.6,120.8,115.9,109.7,114.8,116.2,112.2) > par10 = 'FALSE' > par9 = '0' > par8 = '0' > par7 = '1' > par6 = '2' > par5 = '12' > par4 = '1' > par3 = '0' > par2 = '1' > par1 = '12' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: AUTHOR(S), (YEAR), YOUR SOFTWARE TITLE (vNUMBER) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_YOURPAGE.wasp/ > #Source of accompanying publication: Office for Research, Development, and Education > #Technical description: Write here your technical program description (don't use hard returns!) > par1 <- as.numeric(par1) #cut off periods > par2 <- as.numeric(par2) #lambda > par3 <- as.numeric(par3) #degree of non-seasonal differencing > par4 <- as.numeric(par4) #degree of seasonal differencing > par5 <- as.numeric(par5) #seasonal period > par6 <- as.numeric(par6) #p > par7 <- as.numeric(par7) #q > par8 <- as.numeric(par8) #P > par9 <- as.numeric(par9) #Q > if (par10 == 'TRUE') par10 <- TRUE > if (par10 == 'FALSE') par10 <- FALSE > if (par2 == 0) x <- log(x) > if (par2 != 0) x <- x^par2 > lx <- length(x) > first <- lx - 2*par1 > nx <- lx - par1 > nx1 <- nx + 1 > fx <- lx - nx > if (fx < 1) { + fx <- par5 + nx1 <- lx + fx - 1 + first <- lx - 2*fx + } > first <- 1 > if (fx < 3) fx <- round(lx/10,0) > (arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML')) Call: arima(x = x[1:nx], order = c(par6, par3, par7), seasonal = list(order = c(par8, par4, par9), period = par5), include.mean = par10, method = "ML") Coefficients: ar1 ar2 ma1 0.5892 0.2085 -0.2953 s.e. 0.3130 0.2077 0.3116 sigma^2 estimated as 39.98: log likelihood = -196.07, aic = 400.14 > (forecast <- predict(arima.out,fx)) $pred Time Series: Start = 73 End = 84 Frequency = 1 [1] 120.2980 118.2936 127.2902 114.6927 121.9124 117.7852 112.7929 116.0322 [9] 119.2974 122.9845 116.8898 114.9105 $se Time Series: Start = 73 End = 84 Frequency = 1 [1] 6.322906 6.590344 7.018365 7.247906 7.415904 7.529362 7.608508 7.663508 [9] 7.701922 7.728783 7.747593 7.760777 > (lb <- forecast$pred - 1.96 * forecast$se) Time Series: Start = 73 End = 84 Frequency = 1 [1] 107.90507 105.37657 113.53423 100.48680 107.37723 103.02765 97.88020 [8] 101.01171 104.20162 107.83604 101.70452 99.69936 > (ub <- forecast$pred + 1.96 * forecast$se) Time Series: Start = 73 End = 84 Frequency = 1 [1] 132.6909 131.2107 141.0462 128.8986 136.4476 132.5428 127.7056 131.0527 [9] 134.3932 138.1329 132.0751 130.1216 > if (par2 == 0) { + x <- exp(x) + forecast$pred <- exp(forecast$pred) + lb <- exp(lb) + ub <- exp(ub) + } > if (par2 != 0) { + x <- x^(1/par2) + forecast$pred <- forecast$pred^(1/par2) + lb <- lb^(1/par2) + ub <- ub^(1/par2) + } > if (par2 < 0) { + olb <- lb + lb <- ub + ub <- olb + } > (actandfor <- c(x[1:nx], forecast$pred)) [1] 101.0000 98.7000 105.1000 98.4000 101.7000 102.9000 92.2000 94.9000 [9] 92.8000 98.5000 94.3000 87.4000 103.4000 101.2000 109.6000 111.9000 [17] 108.9000 105.6000 107.8000 97.5000 102.4000 105.6000 99.8000 96.2000 [25] 113.1000 107.4000 116.8000 112.9000 105.3000 109.3000 107.9000 101.1000 [33] 114.7000 116.2000 108.4000 113.4000 108.7000 112.6000 124.2000 114.9000 [41] 110.5000 121.5000 118.1000 111.7000 132.7000 119.0000 116.7000 120.1000 [49] 113.4000 106.6000 116.3000 112.6000 111.6000 125.1000 110.7000 109.6000 [57] 114.2000 113.4000 116.0000 109.6000 117.8000 115.8000 125.3000 113.0000 [65] 120.5000 116.6000 111.8000 115.2000 118.6000 122.4000 116.4000 114.5000 [73] 120.2980 118.2936 127.2902 114.6927 121.9124 117.7852 112.7929 116.0322 [81] 119.2974 122.9845 116.8898 114.9105 > (perc.se <- (ub-forecast$pred)/1.96/forecast$pred) Time Series: Start = 73 End = 84 Frequency = 1 [1] 0.05256037 0.05571174 0.05513672 0.06319414 0.06082977 0.06392452 [7] 0.06745557 0.06604640 0.06456069 0.06284357 0.06628117 0.06753759 > postscript(file="/var/www/html/rcomp/tmp/1223g1229447728.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mar=c(4,4,2,2),las=1) > ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub)) > plot(x,ylim=ylim,type='n',xlim=c(first,lx)) > usr <- par('usr') > rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon') > rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender') > abline(h= (-3:3)*2 , col ='gray', lty =3) > polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA) > lines(nx1:lx, lb , lty=2) > lines(nx1:lx, ub , lty=2) > lines(x, lwd=2) > lines(nx1:lx, forecast$pred , lwd=2 , col ='white') > box() > par(opar) > dev.off() null device 1 > prob.dec <- array(NA, dim=fx) > prob.sdec <- array(NA, dim=fx) > prob.ldec <- array(NA, dim=fx) > prob.pval <- array(NA, dim=fx) > perf.pe <- array(0, dim=fx) > perf.mape <- array(0, dim=fx) > perf.se <- array(0, dim=fx) > perf.mse <- array(0, dim=fx) > perf.rmse <- array(0, dim=fx) > for (i in 1:fx) { + locSD <- (ub[i] - forecast$pred[i]) / 1.96 + perf.pe[i] = (x[nx+i] - forecast$pred[i]) / forecast$pred[i] + perf.mape[i] = perf.mape[i] + abs(perf.pe[i]) + perf.se[i] = (x[nx+i] - forecast$pred[i])^2 + perf.mse[i] = perf.mse[i] + perf.se[i] + prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD) + prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD) + prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD) + prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD) + } > perf.mape = perf.mape / fx > perf.mse = perf.mse / fx > perf.rmse = sqrt(perf.mse) > postscript(file="/var/www/html/rcomp/tmp/27j3f1229447728.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub))) > dum <- forecast$pred > dum[1:12] <- x[(nx+1):lx] > lines(dum, lty=1) > lines(ub,lty=3) > lines(lb,lty=3) > dev.off() null device 1 > > #Note: the /var/www/html/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/www/html/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'Y[t]',1,header=TRUE) > a<-table.element(a,'F[t]',1,header=TRUE) > a<-table.element(a,'95% LB',1,header=TRUE) > a<-table.element(a,'95% UB',1,header=TRUE) > a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE) > mylab <- paste('P(F[t]>Y[',nx,sep='') > mylab <- paste(mylab,'])',sep='') > a<-table.element(a,mylab,1,header=TRUE) > a<-table.row.end(a) > for (i in (nx-par5):nx) { + a<-table.row.start(a) + a<-table.element(a,i,header=TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.row.end(a) + } > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(x[nx+i],4)) + a<-table.element(a,round(forecast$pred[i],4)) + a<-table.element(a,round(lb[i],4)) + a<-table.element(a,round(ub[i],4)) + a<-table.element(a,round((1-prob.pval[i]),4)) + a<-table.element(a,round((1-prob.dec[i]),4)) + a<-table.element(a,round((1-prob.sdec[i]),4)) + a<-table.element(a,round((1-prob.ldec[i]),4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/3ru3o1229447728.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',7,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'% S.E.',1,header=TRUE) > a<-table.element(a,'PE',1,header=TRUE) > a<-table.element(a,'MAPE',1,header=TRUE) > a<-table.element(a,'Sq.E',1,header=TRUE) > a<-table.element(a,'MSE',1,header=TRUE) > a<-table.element(a,'RMSE',1,header=TRUE) > a<-table.row.end(a) > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(perc.se[i],4)) + a<-table.element(a,round(perf.pe[i],4)) + a<-table.element(a,round(perf.mape[i],4)) + a<-table.element(a,round(perf.se[i],4)) + a<-table.element(a,round(perf.mse[i],4)) + a<-table.element(a,round(perf.rmse[i],4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/4lgdh1229447728.tab") > > system("convert tmp/1223g1229447728.ps tmp/1223g1229447728.png") > system("convert tmp/27j3f1229447728.ps tmp/27j3f1229447728.png") > > > proc.time() user system elapsed 0.646 0.316 0.728