R version 2.8.0 (2008-10-20) Copyright (C) 2008 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- c(12.5,14.8,15.9,14.8,12.9,14.3,14.2,15.9,15.3,15.5,15.1,15,12.1,15.8,16.9,15.1,13.7,14.8,14.7,16,15.4,15,15.5,15.1,11.7,16.3,16.7,15,14.9,14.6,15.3,17.9,16.4,15.4,17.9,15.9,13.9,17.8,17.9,17.4,16.7,16,16.6,19.1,17.8,17.2,18.6,16.3,15.1,19.2,17.7,19.1,18,17.5,17.8,21.1,17.2,19.4,19.8,17.6,16.2,19.5,19.9,20,17.3,18.9,18.6,21.4,18.6,19.8,20.8,19.6,17.7,19.8,22.2,20.7,17.9,21.2,21.4,21.7,23.2,21.5,22.9,23.2,18.6) > par10 = 'FALSE' > par9 = '0' > par8 = '2' > par7 = '1' > par6 = '2' > par5 = '12' > par4 = '1' > par3 = '0' > par2 = '1' > par1 = '12' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: AUTHOR(S), (YEAR), YOUR SOFTWARE TITLE (vNUMBER) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_YOURPAGE.wasp/ > #Source of accompanying publication: Office for Research, Development, and Education > #Technical description: Write here your technical program description (don't use hard returns!) > par1 <- as.numeric(par1) #cut off periods > par2 <- as.numeric(par2) #lambda > par3 <- as.numeric(par3) #degree of non-seasonal differencing > par4 <- as.numeric(par4) #degree of seasonal differencing > par5 <- as.numeric(par5) #seasonal period > par6 <- as.numeric(par6) #p > par7 <- as.numeric(par7) #q > par8 <- as.numeric(par8) #P > par9 <- as.numeric(par9) #Q > if (par10 == 'TRUE') par10 <- TRUE > if (par10 == 'FALSE') par10 <- FALSE > if (par2 == 0) x <- log(x) > if (par2 != 0) x <- x^par2 > lx <- length(x) > first <- lx - 2*par1 > nx <- lx - par1 > nx1 <- nx + 1 > fx <- lx - nx > if (fx < 1) { + fx <- par5 + nx1 <- lx + fx - 1 + first <- lx - 2*fx + } > first <- 1 > if (fx < 3) fx <- round(lx/10,0) > (arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML')) Call: arima(x = x[1:nx], order = c(par6, par3, par7), seasonal = list(order = c(par8, par4, par9), period = par5), include.mean = par10, method = "ML") Coefficients: ar1 ar2 ma1 sar1 sar2 0.6024 0.3889 -0.6618 -0.2749 -0.2396 s.e. 0.1400 0.1391 0.1021 0.1518 0.1680 sigma^2 estimated as 0.4657: log likelihood = -65.28, aic = 142.55 > (forecast <- predict(arima.out,fx)) $pred Time Series: Start = 74 End = 85 Frequency = 1 [1] 20.81813 21.20179 21.14007 18.98493 19.94053 19.86933 22.60276 20.11287 [9] 20.90568 21.96957 20.45990 18.73453 $se Time Series: Start = 74 End = 85 Frequency = 1 [1] 0.6824320 0.6836346 0.7248584 0.7363188 0.7560647 0.7715372 0.7878262 [8] 0.8030840 0.8180643 0.8325204 0.8465825 0.8602333 > (lb <- forecast$pred - 1.96 * forecast$se) Time Series: Start = 74 End = 85 Frequency = 1 [1] 19.48057 19.86186 19.71935 17.54175 18.45864 18.35711 21.05862 18.53882 [9] 19.30228 20.33783 18.80060 17.04848 > (ub <- forecast$pred + 1.96 * forecast$se) Time Series: Start = 74 End = 85 Frequency = 1 [1] 22.15570 22.54171 22.56079 20.42812 21.42241 21.38154 24.14690 21.68691 [9] 22.50909 23.60131 22.11920 20.42059 > if (par2 == 0) { + x <- exp(x) + forecast$pred <- exp(forecast$pred) + lb <- exp(lb) + ub <- exp(ub) + } > if (par2 != 0) { + x <- x^(1/par2) + forecast$pred <- forecast$pred^(1/par2) + lb <- lb^(1/par2) + ub <- ub^(1/par2) + } > if (par2 < 0) { + olb <- lb + lb <- ub + ub <- olb + } > (actandfor <- c(x[1:nx], forecast$pred)) [1] 12.50000 14.80000 15.90000 14.80000 12.90000 14.30000 14.20000 15.90000 [9] 15.30000 15.50000 15.10000 15.00000 12.10000 15.80000 16.90000 15.10000 [17] 13.70000 14.80000 14.70000 16.00000 15.40000 15.00000 15.50000 15.10000 [25] 11.70000 16.30000 16.70000 15.00000 14.90000 14.60000 15.30000 17.90000 [33] 16.40000 15.40000 17.90000 15.90000 13.90000 17.80000 17.90000 17.40000 [41] 16.70000 16.00000 16.60000 19.10000 17.80000 17.20000 18.60000 16.30000 [49] 15.10000 19.20000 17.70000 19.10000 18.00000 17.50000 17.80000 21.10000 [57] 17.20000 19.40000 19.80000 17.60000 16.20000 19.50000 19.90000 20.00000 [65] 17.30000 18.90000 18.60000 21.40000 18.60000 19.80000 20.80000 19.60000 [73] 17.70000 20.81813 21.20179 21.14007 18.98493 19.94053 19.86933 22.60276 [81] 20.11287 20.90568 21.96957 20.45990 18.73453 > (perc.se <- (ub-forecast$pred)/1.96/forecast$pred) Time Series: Start = 74 End = 85 Frequency = 1 [1] 0.03278066 0.03224420 0.03428837 0.03878437 0.03791598 0.03883057 [7] 0.03485531 0.03992887 0.03913119 0.03789425 0.04137764 0.04591699 > postscript(file="/var/www/html/rcomp/tmp/16r2m1229517755.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mar=c(4,4,2,2),las=1) > ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub)) > plot(x,ylim=ylim,type='n',xlim=c(first,lx)) > usr <- par('usr') > rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon') > rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender') > abline(h= (-3:3)*2 , col ='gray', lty =3) > polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA) > lines(nx1:lx, lb , lty=2) > lines(nx1:lx, ub , lty=2) > lines(x, lwd=2) > lines(nx1:lx, forecast$pred , lwd=2 , col ='white') > box() > par(opar) > dev.off() null device 1 > prob.dec <- array(NA, dim=fx) > prob.sdec <- array(NA, dim=fx) > prob.ldec <- array(NA, dim=fx) > prob.pval <- array(NA, dim=fx) > perf.pe <- array(0, dim=fx) > perf.mape <- array(0, dim=fx) > perf.se <- array(0, dim=fx) > perf.mse <- array(0, dim=fx) > perf.rmse <- array(0, dim=fx) > for (i in 1:fx) { + locSD <- (ub[i] - forecast$pred[i]) / 1.96 + perf.pe[i] = (x[nx+i] - forecast$pred[i]) / forecast$pred[i] + perf.mape[i] = perf.mape[i] + abs(perf.pe[i]) + perf.se[i] = (x[nx+i] - forecast$pred[i])^2 + perf.mse[i] = perf.mse[i] + perf.se[i] + prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD) + prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD) + prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD) + prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD) + } > perf.mape = perf.mape / fx > perf.mse = perf.mse / fx > perf.rmse = sqrt(perf.mse) > postscript(file="/var/www/html/rcomp/tmp/2k2pe1229517755.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub))) > dum <- forecast$pred > dum[1:12] <- x[(nx+1):lx] > lines(dum, lty=1) > lines(ub,lty=3) > lines(lb,lty=3) > dev.off() null device 1 > > #Note: the /var/www/html/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/www/html/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'Y[t]',1,header=TRUE) > a<-table.element(a,'F[t]',1,header=TRUE) > a<-table.element(a,'95% LB',1,header=TRUE) > a<-table.element(a,'95% UB',1,header=TRUE) > a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE) > mylab <- paste('P(F[t]>Y[',nx,sep='') > mylab <- paste(mylab,'])',sep='') > a<-table.element(a,mylab,1,header=TRUE) > a<-table.row.end(a) > for (i in (nx-par5):nx) { + a<-table.row.start(a) + a<-table.element(a,i,header=TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.row.end(a) + } > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(x[nx+i],4)) + a<-table.element(a,round(forecast$pred[i],4)) + a<-table.element(a,round(lb[i],4)) + a<-table.element(a,round(ub[i],4)) + a<-table.element(a,round((1-prob.pval[i]),4)) + a<-table.element(a,round((1-prob.dec[i]),4)) + a<-table.element(a,round((1-prob.sdec[i]),4)) + a<-table.element(a,round((1-prob.ldec[i]),4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/3uqi21229517755.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',7,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'% S.E.',1,header=TRUE) > a<-table.element(a,'PE',1,header=TRUE) > a<-table.element(a,'MAPE',1,header=TRUE) > a<-table.element(a,'Sq.E',1,header=TRUE) > a<-table.element(a,'MSE',1,header=TRUE) > a<-table.element(a,'RMSE',1,header=TRUE) > a<-table.row.end(a) > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(perc.se[i],4)) + a<-table.element(a,round(perf.pe[i],4)) + a<-table.element(a,round(perf.mape[i],4)) + a<-table.element(a,round(perf.se[i],4)) + a<-table.element(a,round(perf.mse[i],4)) + a<-table.element(a,round(perf.rmse[i],4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/4fl9e1229517755.tab") > > system("convert tmp/16r2m1229517755.ps tmp/16r2m1229517755.png") > system("convert tmp/2k2pe1229517755.ps tmp/2k2pe1229517755.png") > > > proc.time() user system elapsed 1.632 0.358 1.802