R version 2.8.0 (2008-10-20) Copyright (C) 2008 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- c(97.7,101.5,119.6,108.1,117.8,125.5,89.2,92.3,104.6,122.8,96.0,94.6,93.3,101.1,114.2,104.7,113.3,118.2,83.6,73.9,99.5,97.7,103.0,106.3,92.2,101.8,122.8,111.8,106.3,121.5,81.9,85.4,110.9,117.3,106.3,105.5,101.3,105.9,126.3,111.9,108.9,127.2,94.2,85.7,116.2,107.2,110.6,112.0,104.5,112.0,132.8,110.8,128.7,136.8,94.9,88.8,123.2,125.3,122.7,125.7,116.3,118.7,142.0,127.9,131.9,152.3,110.8,99.1,135.0,133.2,131.0,133.9,119.9,136.9,148.9,145.1,142.4,159.6,120.7,109.0,142.0) > par10 = 'FALSE' > par9 = '1' > par8 = '1' > par7 = '1' > par6 = '1' > par5 = '1' > par4 = '1' > par3 = '0' > par2 = '0.2' > par1 = '12' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: AUTHOR(S), (YEAR), YOUR SOFTWARE TITLE (vNUMBER) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_YOURPAGE.wasp/ > #Source of accompanying publication: Office for Research, Development, and Education > #Technical description: Write here your technical program description (don't use hard returns!) > par1 <- as.numeric(par1) #cut off periods > par2 <- as.numeric(par2) #lambda > par3 <- as.numeric(par3) #degree of non-seasonal differencing > par4 <- as.numeric(par4) #degree of seasonal differencing > par5 <- as.numeric(par5) #seasonal period > par6 <- as.numeric(par6) #p > par7 <- as.numeric(par7) #q > par8 <- as.numeric(par8) #P > par9 <- as.numeric(par9) #Q > if (par10 == 'TRUE') par10 <- TRUE > if (par10 == 'FALSE') par10 <- FALSE > if (par2 == 0) x <- log(x) > if (par2 != 0) x <- x^par2 > lx <- length(x) > first <- lx - 2*par1 > nx <- lx - par1 > nx1 <- nx + 1 > fx <- lx - nx > if (fx < 1) { + fx <- par5 + nx1 <- lx + fx - 1 + first <- lx - 2*fx + } > first <- 1 > if (fx < 3) fx <- round(lx/10,0) > (arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML')) Call: arima(x = x[1:nx], order = c(par6, par3, par7), seasonal = list(order = c(par8, par4, par9), period = par5), include.mean = par10, method = "ML") Coefficients: ar1 ma1 sar1 sma1 0.4151 -0.7933 0.4151 -0.7933 s.e. 0.2279 0.1342 0.2279 0.1342 sigma^2 estimated as 0.004274: log likelihood = 88.22, aic = -166.44 > (forecast <- predict(arima.out,fx)) $pred Time Series: Start = 70 End = 81 Frequency = 1 [1] 2.628560 2.618372 2.616584 2.616855 2.617387 2.617783 2.618020 2.618148 [9] 2.618214 2.618246 2.618262 2.618269 $se Time Series: Start = 70 End = 81 Frequency = 1 [1] 0.06537747 0.06728861 0.06745586 0.06757379 0.06778035 0.06809083 [7] 0.06847824 0.06891117 0.06936734 0.06983374 0.07030350 0.07077321 > (lb <- forecast$pred - 1.96 * forecast$se) Time Series: Start = 70 End = 81 Frequency = 1 [1] 2.500420 2.486487 2.484370 2.484410 2.484538 2.484325 2.483803 2.483082 [9] 2.482254 2.481372 2.480467 2.479554 > (ub <- forecast$pred + 1.96 * forecast$se) Time Series: Start = 70 End = 81 Frequency = 1 [1] 2.756700 2.750258 2.748797 2.749299 2.750237 2.751241 2.752237 2.753214 [9] 2.754174 2.755121 2.756057 2.756985 > if (par2 == 0) { + x <- exp(x) + forecast$pred <- exp(forecast$pred) + lb <- exp(lb) + ub <- exp(ub) + } > if (par2 != 0) { + x <- x^(1/par2) + forecast$pred <- forecast$pred^(1/par2) + lb <- lb^(1/par2) + ub <- ub^(1/par2) + } > if (par2 < 0) { + olb <- lb + lb <- ub + ub <- olb + } > (actandfor <- c(x[1:nx], forecast$pred)) [1] 97.7000 101.5000 119.6000 108.1000 117.8000 125.5000 89.2000 92.3000 [9] 104.6000 122.8000 96.0000 94.6000 93.3000 101.1000 114.2000 104.7000 [17] 113.3000 118.2000 83.6000 73.9000 99.5000 97.7000 103.0000 106.3000 [25] 92.2000 101.8000 122.8000 111.8000 106.3000 121.5000 81.9000 85.4000 [33] 110.9000 117.3000 106.3000 105.5000 101.3000 105.9000 126.3000 111.9000 [41] 108.9000 127.2000 94.2000 85.7000 116.2000 107.2000 110.6000 112.0000 [49] 104.5000 112.0000 132.8000 110.8000 128.7000 136.8000 94.9000 88.8000 [57] 123.2000 125.3000 122.7000 125.7000 116.3000 118.7000 142.0000 127.9000 [65] 131.9000 152.3000 110.8000 99.1000 135.0000 125.4844 123.0714 122.6516 [73] 122.7151 122.8401 122.9330 122.9886 123.0187 123.0342 123.0418 123.0455 [81] 123.0472 > (perc.se <- (ub-forecast$pred)/1.96/forecast$pred) Time Series: Start = 70 End = 81 Frequency = 1 [1] 0.1370903 0.1421060 0.1426021 0.1428603 0.1433092 0.1440085 0.1448974 [8] 0.1459000 0.1469619 0.1480512 0.1491509 0.1502524 > postscript(file="/var/www/html/rcomp/tmp/1jzog1229519623.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mar=c(4,4,2,2),las=1) > ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub)) > plot(x,ylim=ylim,type='n',xlim=c(first,lx)) > usr <- par('usr') > rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon') > rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender') > abline(h= (-3:3)*2 , col ='gray', lty =3) > polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA) > lines(nx1:lx, lb , lty=2) > lines(nx1:lx, ub , lty=2) > lines(x, lwd=2) > lines(nx1:lx, forecast$pred , lwd=2 , col ='white') > box() > par(opar) > dev.off() null device 1 > prob.dec <- array(NA, dim=fx) > prob.sdec <- array(NA, dim=fx) > prob.ldec <- array(NA, dim=fx) > prob.pval <- array(NA, dim=fx) > perf.pe <- array(0, dim=fx) > perf.mape <- array(0, dim=fx) > perf.se <- array(0, dim=fx) > perf.mse <- array(0, dim=fx) > perf.rmse <- array(0, dim=fx) > for (i in 1:fx) { + locSD <- (ub[i] - forecast$pred[i]) / 1.96 + perf.pe[i] = (x[nx+i] - forecast$pred[i]) / forecast$pred[i] + perf.mape[i] = perf.mape[i] + abs(perf.pe[i]) + perf.se[i] = (x[nx+i] - forecast$pred[i])^2 + perf.mse[i] = perf.mse[i] + perf.se[i] + prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD) + prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD) + prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD) + prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD) + } > perf.mape = perf.mape / fx > perf.mse = perf.mse / fx > perf.rmse = sqrt(perf.mse) > postscript(file="/var/www/html/rcomp/tmp/2yvkx1229519623.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub))) > dum <- forecast$pred > dum[1:12] <- x[(nx+1):lx] > lines(dum, lty=1) > lines(ub,lty=3) > lines(lb,lty=3) > dev.off() null device 1 > > #Note: the /var/www/html/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/www/html/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'Y[t]',1,header=TRUE) > a<-table.element(a,'F[t]',1,header=TRUE) > a<-table.element(a,'95% LB',1,header=TRUE) > a<-table.element(a,'95% UB',1,header=TRUE) > a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE) > mylab <- paste('P(F[t]>Y[',nx,sep='') > mylab <- paste(mylab,'])',sep='') > a<-table.element(a,mylab,1,header=TRUE) > a<-table.row.end(a) > for (i in (nx-par5):nx) { + a<-table.row.start(a) + a<-table.element(a,i,header=TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.row.end(a) + } > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(x[nx+i],4)) + a<-table.element(a,round(forecast$pred[i],4)) + a<-table.element(a,round(lb[i],4)) + a<-table.element(a,round(ub[i],4)) + a<-table.element(a,round((1-prob.pval[i]),4)) + a<-table.element(a,round((1-prob.dec[i]),4)) + a<-table.element(a,round((1-prob.sdec[i]),4)) + a<-table.element(a,round((1-prob.ldec[i]),4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/32lhj1229519623.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',7,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'% S.E.',1,header=TRUE) > a<-table.element(a,'PE',1,header=TRUE) > a<-table.element(a,'MAPE',1,header=TRUE) > a<-table.element(a,'Sq.E',1,header=TRUE) > a<-table.element(a,'MSE',1,header=TRUE) > a<-table.element(a,'RMSE',1,header=TRUE) > a<-table.row.end(a) > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(perc.se[i],4)) + a<-table.element(a,round(perf.pe[i],4)) + a<-table.element(a,round(perf.mape[i],4)) + a<-table.element(a,round(perf.se[i],4)) + a<-table.element(a,round(perf.mse[i],4)) + a<-table.element(a,round(perf.rmse[i],4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/4w1931229519624.tab") > > system("convert tmp/1jzog1229519623.ps tmp/1jzog1229519623.png") > system("convert tmp/2yvkx1229519623.ps tmp/2yvkx1229519623.png") > > > proc.time() user system elapsed 0.587 0.319 0.703