R version 2.8.0 (2008-10-20) Copyright (C) 2008 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- c(98.5,97.0,103.3,99.6,100.1,102.9,95.9,94.5,107.4,116.0,102.8,99.8,109.6,103.0,111.6,106.3,97.9,108.8,103.9,101.2,122.9,123.9,111.7,120.9,99.6,103.3,119.4,106.5,101.9,124.6,106.5,107.8,127.4,120.1,118.5,127.7,107.7,104.5,118.8,110.3,109.6,119.1,96.5,106.7,126.3,116.2,118.8,115.2,110.0,111.4,129.6,108.1,117.8,122.9,100.6,111.8,127.0,128.6,124.8,118.5,114.7,112.6,128.7,111.0,115.8,126.0,111.1,113.2,120.1,130.6,124.0,119.4,116.7,116.5,119.6,126.5,111.3,123.5,114.2,103.7,129.5) > par10 = 'FALSE' > par9 = '1' > par8 = '2' > par7 = '1' > par6 = '3' > par5 = '1' > par4 = '1' > par3 = '0' > par2 = '1' > par1 = '12' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: AUTHOR(S), (YEAR), YOUR SOFTWARE TITLE (vNUMBER) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_YOURPAGE.wasp/ > #Source of accompanying publication: Office for Research, Development, and Education > #Technical description: Write here your technical program description (don't use hard returns!) > par1 <- as.numeric(par1) #cut off periods > par2 <- as.numeric(par2) #lambda > par3 <- as.numeric(par3) #degree of non-seasonal differencing > par4 <- as.numeric(par4) #degree of seasonal differencing > par5 <- as.numeric(par5) #seasonal period > par6 <- as.numeric(par6) #p > par7 <- as.numeric(par7) #q > par8 <- as.numeric(par8) #P > par9 <- as.numeric(par9) #Q > if (par10 == 'TRUE') par10 <- TRUE > if (par10 == 'FALSE') par10 <- FALSE > if (par2 == 0) x <- log(x) > if (par2 != 0) x <- x^par2 > lx <- length(x) > first <- lx - 2*par1 > nx <- lx - par1 > nx1 <- nx + 1 > fx <- lx - nx > if (fx < 1) { + fx <- par5 + nx1 <- lx + fx - 1 + first <- lx - 2*fx + } > first <- 1 > if (fx < 3) fx <- round(lx/10,0) > (arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML')) Call: arima(x = x[1:nx], order = c(par6, par3, par7), seasonal = list(order = c(par8, par4, par9), period = par5), include.mean = par10, method = "ML") Coefficients: ar1 ar2 ar3 ma1 sar1 sar2 sma1 -0.753 -0.5792 0.173 -0.3854 0.9292 -0.6228 -0.3854 s.e. NaN NaN NaN NaN 0.1660 0.0864 NaN sigma^2 estimated as 50.16: log likelihood = -230.72, aic = 477.44 Warning message: In sqrt(diag(x$var.coef)) : NaNs produced > (forecast <- predict(arima.out,fx)) $pred Time Series: Start = 70 End = 81 Frequency = 1 [1] 112.5178 116.8602 120.4035 113.6389 116.4164 118.0798 113.9601 116.9808 [9] 117.8075 114.8704 116.9966 117.0275 $se Time Series: Start = 70 End = 81 Frequency = 1 [1] 7.082630 7.642459 7.651710 8.176477 8.185023 8.198433 9.025197 9.175131 [9] 9.266794 9.676061 9.727148 9.815282 > (lb <- forecast$pred - 1.96 * forecast$se) Time Series: Start = 70 End = 81 Frequency = 1 [1] 98.63586 101.88103 105.40617 97.61305 100.37379 102.01089 96.27074 [8] 98.99750 99.64460 95.90530 97.93142 97.78957 > (ub <- forecast$pred + 1.96 * forecast$se) Time Series: Start = 70 End = 81 Frequency = 1 [1] 126.3998 131.8395 135.4009 129.6648 132.4591 134.1488 131.6495 134.9640 [9] 135.9704 133.8355 136.0618 136.2655 > if (par2 == 0) { + x <- exp(x) + forecast$pred <- exp(forecast$pred) + lb <- exp(lb) + ub <- exp(ub) + } > if (par2 != 0) { + x <- x^(1/par2) + forecast$pred <- forecast$pred^(1/par2) + lb <- lb^(1/par2) + ub <- ub^(1/par2) + } > if (par2 < 0) { + olb <- lb + lb <- ub + ub <- olb + } > (actandfor <- c(x[1:nx], forecast$pred)) [1] 98.5000 97.0000 103.3000 99.6000 100.1000 102.9000 95.9000 94.5000 [9] 107.4000 116.0000 102.8000 99.8000 109.6000 103.0000 111.6000 106.3000 [17] 97.9000 108.8000 103.9000 101.2000 122.9000 123.9000 111.7000 120.9000 [25] 99.6000 103.3000 119.4000 106.5000 101.9000 124.6000 106.5000 107.8000 [33] 127.4000 120.1000 118.5000 127.7000 107.7000 104.5000 118.8000 110.3000 [41] 109.6000 119.1000 96.5000 106.7000 126.3000 116.2000 118.8000 115.2000 [49] 110.0000 111.4000 129.6000 108.1000 117.8000 122.9000 100.6000 111.8000 [57] 127.0000 128.6000 124.8000 118.5000 114.7000 112.6000 128.7000 111.0000 [65] 115.8000 126.0000 111.1000 113.2000 120.1000 112.5178 116.8602 120.4035 [73] 113.6389 116.4164 118.0798 113.9601 116.9808 117.8075 114.8704 116.9966 [81] 117.0275 > (perc.se <- (ub-forecast$pred)/1.96/forecast$pred) Time Series: Start = 70 End = 81 Frequency = 1 [1] 0.06294674 0.06539828 0.06355055 0.07195136 0.07030814 0.06943128 [7] 0.07919610 0.07843282 0.07866047 0.08423460 0.08314041 0.08387157 > postscript(file="/var/www/html/rcomp/tmp/1dd531229524356.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mar=c(4,4,2,2),las=1) > ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub)) > plot(x,ylim=ylim,type='n',xlim=c(first,lx)) > usr <- par('usr') > rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon') > rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender') > abline(h= (-3:3)*2 , col ='gray', lty =3) > polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA) > lines(nx1:lx, lb , lty=2) > lines(nx1:lx, ub , lty=2) > lines(x, lwd=2) > lines(nx1:lx, forecast$pred , lwd=2 , col ='white') > box() > par(opar) > dev.off() null device 1 > prob.dec <- array(NA, dim=fx) > prob.sdec <- array(NA, dim=fx) > prob.ldec <- array(NA, dim=fx) > prob.pval <- array(NA, dim=fx) > perf.pe <- array(0, dim=fx) > perf.mape <- array(0, dim=fx) > perf.se <- array(0, dim=fx) > perf.mse <- array(0, dim=fx) > perf.rmse <- array(0, dim=fx) > for (i in 1:fx) { + locSD <- (ub[i] - forecast$pred[i]) / 1.96 + perf.pe[i] = (x[nx+i] - forecast$pred[i]) / forecast$pred[i] + perf.mape[i] = perf.mape[i] + abs(perf.pe[i]) + perf.se[i] = (x[nx+i] - forecast$pred[i])^2 + perf.mse[i] = perf.mse[i] + perf.se[i] + prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD) + prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD) + prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD) + prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD) + } > perf.mape = perf.mape / fx > perf.mse = perf.mse / fx > perf.rmse = sqrt(perf.mse) > postscript(file="/var/www/html/rcomp/tmp/2m25o1229524356.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub))) > dum <- forecast$pred > dum[1:12] <- x[(nx+1):lx] > lines(dum, lty=1) > lines(ub,lty=3) > lines(lb,lty=3) > dev.off() null device 1 > > #Note: the /var/www/html/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/www/html/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'Y[t]',1,header=TRUE) > a<-table.element(a,'F[t]',1,header=TRUE) > a<-table.element(a,'95% LB',1,header=TRUE) > a<-table.element(a,'95% UB',1,header=TRUE) > a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE) > mylab <- paste('P(F[t]>Y[',nx,sep='') > mylab <- paste(mylab,'])',sep='') > a<-table.element(a,mylab,1,header=TRUE) > a<-table.row.end(a) > for (i in (nx-par5):nx) { + a<-table.row.start(a) + a<-table.element(a,i,header=TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.row.end(a) + } > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(x[nx+i],4)) + a<-table.element(a,round(forecast$pred[i],4)) + a<-table.element(a,round(lb[i],4)) + a<-table.element(a,round(ub[i],4)) + a<-table.element(a,round((1-prob.pval[i]),4)) + a<-table.element(a,round((1-prob.dec[i]),4)) + a<-table.element(a,round((1-prob.sdec[i]),4)) + a<-table.element(a,round((1-prob.ldec[i]),4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/3thxt1229524356.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',7,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'% S.E.',1,header=TRUE) > a<-table.element(a,'PE',1,header=TRUE) > a<-table.element(a,'MAPE',1,header=TRUE) > a<-table.element(a,'Sq.E',1,header=TRUE) > a<-table.element(a,'MSE',1,header=TRUE) > a<-table.element(a,'RMSE',1,header=TRUE) > a<-table.row.end(a) > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(perc.se[i],4)) + a<-table.element(a,round(perf.pe[i],4)) + a<-table.element(a,round(perf.mape[i],4)) + a<-table.element(a,round(perf.se[i],4)) + a<-table.element(a,round(perf.mse[i],4)) + a<-table.element(a,round(perf.rmse[i],4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/4down1229524357.tab") > > system("convert tmp/1dd531229524356.ps tmp/1dd531229524356.png") > system("convert tmp/2m25o1229524356.ps tmp/2m25o1229524356.png") > > > proc.time() user system elapsed 0.651 0.319 1.162