R version 2.8.0 (2008-10-20) Copyright (C) 2008 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- c(21.1,21.0,20.4,19.5,18.6,18.8,23.7,24.8,25.0,23.6,22.3,21.8,20.8,19.7,18.3,17.4,17.0,18.1,23.9,25.6,25.3,23.6,21.9,21.4,20.6,20.5,20.2,20.6,19.7,19.3,22.8,23.5,23.8,22.6,22.0,21.7,20.7,20.2,19.1,19.5,18.7,18.6,22.2,23.2,23.5,21.3,20.0,18.7,18.9,18.3,18.4,19.9,19.2,18.5,20.9,20.5,19.4,18.1,17.0,17.0,17.3,16.7,15.5,15.3,13.7,14.1,17.3,18.1) > par10 = 'FALSE' > par9 = '1' > par8 = '2' > par7 = '1' > par6 = '3' > par5 = '12' > par4 = '1' > par3 = '2' > par2 = '1' > par1 = '0' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: AUTHOR(S), (YEAR), YOUR SOFTWARE TITLE (vNUMBER) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_YOURPAGE.wasp/ > #Source of accompanying publication: Office for Research, Development, and Education > #Technical description: Write here your technical program description (don't use hard returns!) > par1 <- as.numeric(par1) #cut off periods > par2 <- as.numeric(par2) #lambda > par3 <- as.numeric(par3) #degree of non-seasonal differencing > par4 <- as.numeric(par4) #degree of seasonal differencing > par5 <- as.numeric(par5) #seasonal period > par6 <- as.numeric(par6) #p > par7 <- as.numeric(par7) #q > par8 <- as.numeric(par8) #P > par9 <- as.numeric(par9) #Q > if (par10 == 'TRUE') par10 <- TRUE > if (par10 == 'FALSE') par10 <- FALSE > if (par2 == 0) x <- log(x) > if (par2 != 0) x <- x^par2 > lx <- length(x) > first <- lx - 2*par1 > nx <- lx - par1 > nx1 <- nx + 1 > fx <- lx - nx > if (fx < 1) { + fx <- par5 + nx1 <- lx + fx - 1 + first <- lx - 2*fx + } > first <- 1 > if (fx < 3) fx <- round(lx/10,0) > (arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML')) Call: arima(x = x[1:nx], order = c(par6, par3, par7), seasonal = list(order = c(par8, par4, par9), period = par5), include.mean = par10, method = "ML") Coefficients: ar1 ar2 ar3 ma1 sar1 sar2 sma1 0.4614 0.1491 -0.5916 -0.9997 -0.0899 -0.0535 -0.1286 s.e. 0.1136 0.1218 0.1167 0.0779 NaN 0.2349 NaN sigma^2 estimated as 0.3106: log likelihood = -51.21, aic = 118.42 Warning messages: 1: In arima(x[1:nx], order = c(par6, par3, par7), seasonal = list(order = c(par8, : possible convergence problem: optim gave code=1 2: In sqrt(diag(x$var.coef)) : NaNs produced > (forecast <- predict(arima.out,fx)) $pred Time Series: Start = 69 End = 80 Frequency = 1 [1] 17.14471 15.40519 13.52546 12.93061 12.93138 12.58951 11.82671 12.08965 [9] 10.57855 10.54921 13.36819 13.82663 $se Time Series: Start = 69 End = 80 Frequency = 1 [1] 0.5633333 1.0075344 1.4600385 1.7033482 1.8330549 1.8842234 1.9289321 [8] 1.9920348 2.1070879 2.2575046 2.4143819 2.5415543 > (lb <- forecast$pred - 1.96 * forecast$se) Time Series: Start = 69 End = 80 Frequency = 1 [1] 16.040573 13.430423 10.663787 9.592050 9.338589 8.896430 8.046007 [8] 8.185261 6.448662 6.124504 8.636000 8.845188 > (ub <- forecast$pred + 1.96 * forecast$se) Time Series: Start = 69 End = 80 Frequency = 1 [1] 18.24884 17.37996 16.38714 16.26918 16.52416 16.28259 15.60742 15.99404 [9] 14.70845 14.97392 18.10038 18.80808 > if (par2 == 0) { + x <- exp(x) + forecast$pred <- exp(forecast$pred) + lb <- exp(lb) + ub <- exp(ub) + } > if (par2 != 0) { + x <- x^(1/par2) + forecast$pred <- forecast$pred^(1/par2) + lb <- lb^(1/par2) + ub <- ub^(1/par2) + } > if (par2 < 0) { + olb <- lb + lb <- ub + ub <- olb + } > (actandfor <- c(x[1:nx], forecast$pred)) [1] 21.10000 21.00000 20.40000 19.50000 18.60000 18.80000 23.70000 24.80000 [9] 25.00000 23.60000 22.30000 21.80000 20.80000 19.70000 18.30000 17.40000 [17] 17.00000 18.10000 23.90000 25.60000 25.30000 23.60000 21.90000 21.40000 [25] 20.60000 20.50000 20.20000 20.60000 19.70000 19.30000 22.80000 23.50000 [33] 23.80000 22.60000 22.00000 21.70000 20.70000 20.20000 19.10000 19.50000 [41] 18.70000 18.60000 22.20000 23.20000 23.50000 21.30000 20.00000 18.70000 [49] 18.90000 18.30000 18.40000 19.90000 19.20000 18.50000 20.90000 20.50000 [57] 19.40000 18.10000 17.00000 17.00000 17.30000 16.70000 15.50000 15.30000 [65] 13.70000 14.10000 17.30000 18.10000 17.14471 15.40519 13.52546 12.93061 [73] 12.93138 12.58951 11.82671 12.08965 10.57855 10.54921 13.36819 13.82663 > (perc.se <- (ub-forecast$pred)/1.96/forecast$pred) Time Series: Start = 69 End = 80 Frequency = 1 [1] 0.03285757 0.06540227 0.10794740 0.13172989 0.14175249 0.14966617 [7] 0.16309958 0.16477193 0.19918486 0.21399744 0.18060652 0.18381583 > postscript(file="/var/www/html/rcomp/tmp/130661229538934.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mar=c(4,4,2,2),las=1) > ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub)) > plot(x,ylim=ylim,type='n',xlim=c(first,lx)) > usr <- par('usr') > rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon') > rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender') > abline(h= (-3:3)*2 , col ='gray', lty =3) > polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA) > lines(nx1:lx, lb , lty=2) > lines(nx1:lx, ub , lty=2) > lines(x, lwd=2) > lines(nx1:lx, forecast$pred , lwd=2 , col ='white') > box() > par(opar) > dev.off() null device 1 > prob.dec <- array(NA, dim=fx) > prob.sdec <- array(NA, dim=fx) > prob.ldec <- array(NA, dim=fx) > prob.pval <- array(NA, dim=fx) > perf.pe <- array(0, dim=fx) > perf.mape <- array(0, dim=fx) > perf.se <- array(0, dim=fx) > perf.mse <- array(0, dim=fx) > perf.rmse <- array(0, dim=fx) > for (i in 1:fx) { + locSD <- (ub[i] - forecast$pred[i]) / 1.96 + perf.pe[i] = (x[nx+i] - forecast$pred[i]) / forecast$pred[i] + perf.mape[i] = perf.mape[i] + abs(perf.pe[i]) + perf.se[i] = (x[nx+i] - forecast$pred[i])^2 + perf.mse[i] = perf.mse[i] + perf.se[i] + prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD) + prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD) + prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD) + prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD) + } > perf.mape = perf.mape / fx > perf.mse = perf.mse / fx > perf.rmse = sqrt(perf.mse) > postscript(file="/var/www/html/rcomp/tmp/2noxa1229538935.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub))) > dum <- forecast$pred > dum[1:12] <- x[(nx+1):lx] > lines(dum, lty=1) > lines(ub,lty=3) > lines(lb,lty=3) > dev.off() null device 1 > > #Note: the /var/www/html/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/www/html/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'Y[t]',1,header=TRUE) > a<-table.element(a,'F[t]',1,header=TRUE) > a<-table.element(a,'95% LB',1,header=TRUE) > a<-table.element(a,'95% UB',1,header=TRUE) > a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE) > mylab <- paste('P(F[t]>Y[',nx,sep='') > mylab <- paste(mylab,'])',sep='') > a<-table.element(a,mylab,1,header=TRUE) > a<-table.row.end(a) > for (i in (nx-par5):nx) { + a<-table.row.start(a) + a<-table.element(a,i,header=TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.row.end(a) + } > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(x[nx+i],4)) + a<-table.element(a,round(forecast$pred[i],4)) + a<-table.element(a,round(lb[i],4)) + a<-table.element(a,round(ub[i],4)) + a<-table.element(a,round((1-prob.pval[i]),4)) + a<-table.element(a,round((1-prob.dec[i]),4)) + a<-table.element(a,round((1-prob.sdec[i]),4)) + a<-table.element(a,round((1-prob.ldec[i]),4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/36b5a1229538935.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',7,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'% S.E.',1,header=TRUE) > a<-table.element(a,'PE',1,header=TRUE) > a<-table.element(a,'MAPE',1,header=TRUE) > a<-table.element(a,'Sq.E',1,header=TRUE) > a<-table.element(a,'MSE',1,header=TRUE) > a<-table.element(a,'RMSE',1,header=TRUE) > a<-table.row.end(a) > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(perc.se[i],4)) + a<-table.element(a,round(perf.pe[i],4)) + a<-table.element(a,round(perf.mape[i],4)) + a<-table.element(a,round(perf.se[i],4)) + a<-table.element(a,round(perf.mse[i],4)) + a<-table.element(a,round(perf.rmse[i],4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/4b0hd1229538935.tab") > > system("convert tmp/130661229538934.ps tmp/130661229538934.png") > system("convert tmp/2noxa1229538935.ps tmp/2noxa1229538935.png") > > > proc.time() user system elapsed 7.215 1.351 8.473