Home » date » 2008 » Dec » 20 »

voeding

*The author of this computation has been verified*
R Software Module: rwasp_multipleregression.wasp (opens new window with default values)
Title produced by software: Multiple Regression
Date of computation: Sat, 20 Dec 2008 01:24:52 -0700
 
Cite this page as follows:
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL http://www.freestatistics.org/blog/date/2008/Dec/20/t1229761579eekcghb39fgcys2.htm/, Retrieved Sat, 20 Dec 2008 09:26:19 +0100
 
BibTeX entries for LaTeX users:
@Manual{KEY,
    author = {{YOUR NAME}},
    publisher = {Office for Research Development and Education},
    title = {Statistical Computations at FreeStatistics.org, URL http://www.freestatistics.org/blog/date/2008/Dec/20/t1229761579eekcghb39fgcys2.htm/},
    year = {2008},
}
@Manual{R,
    title = {R: A Language and Environment for Statistical Computing},
    author = {{R Development Core Team}},
    organization = {R Foundation for Statistical Computing},
    address = {Vienna, Austria},
    year = {2008},
    note = {{ISBN} 3-900051-07-0},
    url = {http://www.R-project.org},
}
 
Original text written by user:
 
IsPrivate?
No (this computation is public)
 
User-defined keywords:
 
Dataseries X:
» Textbox « » Textfile « » CSV «
99.2 11554.5 93.6 13182.1 104.2 14800.1 95.3 12150.7 102.7 14478.2 103.1 13253.9 100 12036.8 107.2 12653.2 107 14035.4 119 14571.4 110.4 15400.9 101.7 14283.2 102.4 14485.3 98.8 14196.3 105.6 15559.1 104.4 13767.4 106.3 14634 107.2 14381.1 108.5 12509.9 106.9 12122.3 114.2 13122.3 125.9 13908.7 110.6 13456.5 110.5 12441.6 106.7 12953 104.7 13057.2 107.4 14350.1 109.8 13830.2 103.4 13755.5 114.8 13574.4 114.3 12802.6 109.6 11737.3 118.3 13850.2 127.3 15081.8 112.3 13653.3 114.9 14019.1 108.2 13962 105.4 13768.7 122.1 14747.1 113.5 13858.1 110 13188 125.3 13693.1 114.3 12970 115.6 11392.8 127.1 13985.2 123 14994.7 122.2 13584.7 126.4 14257.8 112.7 13553.4 105.8 14007.3 120.9 16535.8 116.3 14721.4 115.7 13664.6 127.9 16405.9 108.3 13829.4 121.1 13735.6 128.6 15870.5 123.1 15962.4 127.7 15744.1 126.6 16083.7 118.4 14863.9 110 15533.1 129.6 17473.1 115.8 15925.5 125.9 15573.7 128.4 17495 114 14155.8 125.6 14913.9 128.5 17250.4 136.6 15879.8 133.1 17647.8 124.6 17749.9
 
Output produced by software:

Enter (or paste) a matrix (table) containing all data (time) series. Every column represents a different variable and must be delimited by a space or Tab. Every row represents a period in time (or category) and must be delimited by hard returns. The easiest way to enter data is to copy and paste a block of spreadsheet cells. Please, do not use commas or spaces to seperate groups of digits!


Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time5 seconds
R Server'Sir Ronald Aylmer Fisher' @ 193.190.124.24


Multiple Linear Regression - Estimated Regression Equation
Voeding[t] = + 99.7132835995293 + 0.000269825565465987Invoer[t] -5.58202020815621M1[t] -10.8992351489706M2[t] + 0.253103534374366M3[t] -5.44314119882378M4[t] -4.33379269453077M5[t] + 2.29786941418459M6[t] -5.44050223231386M7[t] -1.25568034298642M8[t] + 4.1806549508592M9[t] + 8.9507217908195M10[t] + 2.23119587326295M11[t] + 0.327183584710254t + e[t]


Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STAT
H0: parameter = 0
2-tail p-value1-tail p-value
(Intercept)99.71328359952937.29993913.659500
Invoer0.0002698255654659870.0005410.49910.619620.30981
M1-5.582020208156212.289651-2.43790.0178570.008928
M2-10.89923514897062.259539-4.82371.1e-055e-06
M30.2531035343743662.3288680.10870.9138310.456915
M4-5.443141198823782.255473-2.41330.0189880.009494
M5-4.333792694530772.247537-1.92820.0587250.029363
M62.297869414184592.2440711.0240.31010.15505
M7-5.440502232313862.390344-2.2760.0265530.013277
M8-1.255680342986422.458261-0.51080.611430.305715
M94.18065495085922.237231.86870.0667210.03336
M108.95072179081952.2443663.98810.0001899.5e-05
M112.231195873262952.2378130.9970.3228850.161443
t0.3271835847102540.03157510.361900


Multiple Linear Regression - Regression Statistics
Multiple R0.935937649433023
R-squared0.875979283626213
Adjusted R-squared0.848181536852778
F-TEST (value)31.5126003113082
F-TEST (DF numerator)13
F-TEST (DF denominator)58
p-value0
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation3.87326476172561
Sum Squared Residuals870.126435036672


Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolation
Forecast
Residuals
Prediction Error
199.297.57614647225981.6238535277402
293.693.02528320650830.57471679349168
3104.2104.941383239488-0.741383239487508
495.398.857446237854-3.55744623785403
5102.7100.9219973304791.77800266952062
6103.1107.550495584105-4.45049558410498
710099.81090282658810.189097173411861
8107.2104.4892287791792.71077122082093
9107110.625700554322-3.62570055432202
10119115.8675774820823.13242251791766
11110.4109.699055455790.700944544209911
12101.7107.493459132716-5.79345913271605
13102.4102.2931542560510.106845743949226
1498.897.2251433115271.57485668847303
15105.6109.072383860199-3.47238386019925
16104.4103.2198762460661.18012375393406
17106.3104.8902391701021.40976082989797
18107.2111.780845978021-4.58084597802129
19108.5103.8647603181334.63523968186686
20106.9108.272181402996-1.37218140299622
21114.2114.305525847018-0.105525847018079
22125.9119.6149670963716.28503290362892
23110.6113.100609642821-2.50060964282108
24110.5110.922751387877-0.422751387876953
25106.7105.8059035586100.894096441389697
26104.7100.8439880264283.85601197357228
27107.4112.672367768074-5.27236776807391
28109.8107.1630243081002.63697569189973
29103.4108.579400427363-5.17940042736321
30114.8115.489380710883-0.689380710882936
31114.3107.8699412776686.43005872233191
32109.6112.094501576815-2.49450157681488
33118.3118.428134892644-0.128134892643825
34127.3123.8577024837423.44229751625771
35112.3117.079914330628-4.77991433062783
36114.9115.274604233923-0.37460423392259
37108.2110.004360570689-1.80436057068854
38105.4104.9621719327800.437828067220184
39122.1116.7056915340875.39430846591303
40113.5111.0967554579002.40324454210019
41110112.352477435484-2.35247743548431
42125.3119.4476120220275.8523879779732
43114.3111.8413130938502.45868690614985
44115.6115.927749686035-0.327749686034889
45127.1122.3907643605054.70923563949521
46123127.760403693513-4.76040369351325
47122.2120.987607313361.21239268664009
48126.4119.2652146129227.13478538707763
49112.7113.820312861162-1.12031286116218
50105.8108.952755329223-3.15275532922306
51120.9121.114531539559-0.214531539559017
52116.3115.2558988850901.04410111491035
53115.7116.407279316508-0.707279316508451
54127.9124.1057978325463.79420216745403
55108.3115.999404201335-7.69940420133467
56121.1120.4861000373320.61389996266834
57128.6126.8256695156011.77433048439913
58123.1131.947716909738-8.84771690973774
59127.7125.4964716559502.20352834404979
60126.6123.6840921294302.91590787057022
61118.4118.1001222812280.299877718771595
62110113.290658193534-3.29065819353411
63129.6125.2936420585934.30635794140666
64115.8119.506998864990-3.7069988649903
65125.9120.8486063200635.05139367993739
66128.4128.3258678724180.0741321275819747
67114120.013678282426-6.01367828242581
68125.6124.7302385176430.869761482356719
69128.5131.124204829910-2.62420482991042
70136.6135.8516323345530.748367665446706
71133.1129.9363416014513.16365839854913
72124.6128.059878503132-3.45987850313225


Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
170.1852574456111260.3705148912222520.814742554388874
180.09011896268889960.1802379253777990.9098810373111
190.08272268519085590.1654453703817120.917277314809144
200.07965200263162040.1593040052632410.92034799736838
210.06256449326888160.1251289865377630.937435506731118
220.04691598931759750.0938319786351950.953084010682402
230.04022138912980920.08044277825961830.95977861087019
240.04340896197866630.08681792395733260.956591038021334
250.02437944178034360.04875888356068720.975620558219656
260.01599473529981900.03198947059963790.984005264700181
270.02807090934935520.05614181869871040.971929090650645
280.02173682618704460.04347365237408910.978263173812955
290.07209638365013210.1441927673002640.927903616349868
300.0710024454423590.1420048908847180.928997554557641
310.1044131242077520.2088262484155030.895586875792248
320.09745739858912730.1949147971782550.902542601410873
330.0688260495769340.1376520991538680.931173950423066
340.0961510629050490.1923021258100980.903848937094951
350.1491256056130700.2982512112261410.85087439438693
360.1312338902469450.2624677804938900.868766109753055
370.1159305530277370.2318611060554730.884069446972263
380.09249550851024830.1849910170204970.907504491489752
390.1839453004052460.3678906008104910.816054699594755
400.1484675188149840.2969350376299670.851532481185016
410.1476236066973320.2952472133946630.852376393302668
420.2134825128962940.4269650257925880.786517487103706
430.4208120465637740.8416240931275480.579187953436226
440.3938777888978820.7877555777957650.606122211102118
450.3858912222749570.7717824445499150.614108777725043
460.5008896706600250.998220658679950.499110329339975
470.5723529650672480.8552940698655040.427647034932752
480.6361050071468040.7277899857063920.363894992853196
490.5502578347987620.8994843304024750.449742165201238
500.4874773890959120.9749547781918250.512522610904088
510.4182889575382400.8365779150764790.58171104246176
520.3855431387078230.7710862774156460.614456861292177
530.6652685529960580.6694628940078840.334731447003942
540.6079003180961650.7841993638076710.392099681903836
550.6041535264027370.7916929471945270.395846473597263


Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level00OK
5% type I error level30.076923076923077NOK
10% type I error level70.179487179487179NOK
 
Charts produced by software:
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2008/Dec/20/t1229761579eekcghb39fgcys2/10rg4p1229761480.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2008/Dec/20/t1229761579eekcghb39fgcys2/10rg4p1229761480.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2008/Dec/20/t1229761579eekcghb39fgcys2/1vipx1229761480.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2008/Dec/20/t1229761579eekcghb39fgcys2/1vipx1229761480.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2008/Dec/20/t1229761579eekcghb39fgcys2/29y9d1229761480.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2008/Dec/20/t1229761579eekcghb39fgcys2/29y9d1229761480.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2008/Dec/20/t1229761579eekcghb39fgcys2/3fi521229761480.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2008/Dec/20/t1229761579eekcghb39fgcys2/3fi521229761480.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2008/Dec/20/t1229761579eekcghb39fgcys2/482y51229761480.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2008/Dec/20/t1229761579eekcghb39fgcys2/482y51229761480.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2008/Dec/20/t1229761579eekcghb39fgcys2/5j3dz1229761480.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2008/Dec/20/t1229761579eekcghb39fgcys2/5j3dz1229761480.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2008/Dec/20/t1229761579eekcghb39fgcys2/6f7nx1229761480.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2008/Dec/20/t1229761579eekcghb39fgcys2/6f7nx1229761480.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2008/Dec/20/t1229761579eekcghb39fgcys2/7hbc11229761480.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2008/Dec/20/t1229761579eekcghb39fgcys2/7hbc11229761480.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2008/Dec/20/t1229761579eekcghb39fgcys2/8lp5p1229761480.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2008/Dec/20/t1229761579eekcghb39fgcys2/8lp5p1229761480.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2008/Dec/20/t1229761579eekcghb39fgcys2/9kpri1229761480.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2008/Dec/20/t1229761579eekcghb39fgcys2/9kpri1229761480.ps (open in new window)


 
Parameters (Session):
par1 = 1 ; par2 = Include Monthly Dummies ; par3 = Linear Trend ;
 
Parameters (R input):
par1 = 1 ; par2 = Include Monthly Dummies ; par3 = Linear Trend ;
 
R code (references can be found in the software module):
library(lattice)
library(lmtest)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
qqline(mysum$resid)
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT<br />H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation<br />Forecast', 1, TRUE)
a<-table.element(a, 'Residuals<br />Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,gqarr[mypoint-kp3+1,1])
a<-table.element(a,gqarr[mypoint-kp3+1,2])
a<-table.element(a,gqarr[mypoint-kp3+1,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,numsignificant1)
a<-table.element(a,numsignificant1/numgqtests)
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,numsignificant5)
a<-table.element(a,numsignificant5/numgqtests)
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,numsignificant10)
a<-table.element(a,numsignificant10/numgqtests)
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}
 





Copyright

Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

Software written by Ed van Stee & Patrick Wessa


Disclaimer

Information provided on this web site is provided "AS IS" without warranty of any kind, either express or implied, including, without limitation, warranties of merchantability, fitness for a particular purpose, and noninfringement. We use reasonable efforts to include accurate and timely information and periodically update the information, and software without notice. However, we make no warranties or representations as to the accuracy or completeness of such information (or software), and we assume no liability or responsibility for errors or omissions in the content of this web site, or any software bugs in online applications. Your use of this web site is AT YOUR OWN RISK. Under no circumstances and under no legal theory shall we be liable to you or any other person for any direct, indirect, special, incidental, exemplary, or consequential damages arising from your access to, or use of, this web site.


Privacy Policy

We may request personal information to be submitted to our servers in order to be able to:

  • personalize online software applications according to your needs
  • enforce strict security rules with respect to the data that you upload (e.g. statistical data)
  • manage user sessions of online applications
  • alert you about important changes or upgrades in resources or applications

We NEVER allow other companies to directly offer registered users information about their products and services. Banner references and hyperlinks of third parties NEVER contain any personal data of the visitor.

We do NOT sell, nor transmit by any means, personal information, nor statistical data series uploaded by you to third parties.

We carefully protect your data from loss, misuse, alteration, and destruction. However, at any time, and under any circumstance you are solely responsible for managing your passwords, and keeping them secret.

We store a unique ANONYMOUS USER ID in the form of a small 'Cookie' on your computer. This allows us to track your progress when using this website which is necessary to create state-dependent features. The cookie is used for NO OTHER PURPOSE. At any time you may opt to disallow cookies from this website - this will not affect other features of this website.

We examine cookies that are used by third-parties (banner and online ads) very closely: abuse from third-parties automatically results in termination of the advertising contract without refund. We have very good reason to believe that the cookies that are produced by third parties (banner ads) do NOT cause any privacy or security risk.

FreeStatistics.org is safe. There is no need to download any software to use the applications and services contained in this website. Hence, your system's security is not compromised by their use, and your personal data - other than data you submit in the account application form, and the user-agent information that is transmitted by your browser - is never transmitted to our servers.

As a general rule, we do not log on-line behavior of individuals (other than normal logging of webserver 'hits'). However, in cases of abuse, hacking, unauthorized access, Denial of Service attacks, illegal copying, hotlinking, non-compliance with international webstandards (such as robots.txt), or any other harmful behavior, our system engineers are empowered to log, track, identify, publish, and ban misbehaving individuals - even if this leads to ban entire blocks of IP addresses, or disclosing user's identity.


FreeStatistics.org is powered by