R version 2.8.0 (2008-10-20) Copyright (C) 2008 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- c(130.3,130.9,104.7,115.2,124.5,112.3,127.5,120.6,117.5,117.7,120.4,125,131.6,121.1,114.2,112.1,127,116.8,112,129.7,113.6,115.7,119.5,125.8,129.6,128,112.8,101.6,123.9,118.8,109.1,130.6,112.4,111,116.2,119.8,117.2,127.3,107.7,97.5,120.1,110.6,111.3,119.8,105.5,108.7,128.7,119.5,121.1,128.4,108.8,107.5,125.6,102.9,107.5,120.4,104.3,100.6,121.9,112.7,124.9,123.9,102.2,104.9,109.8,98.9,107.3,112.6,104,110.6,100.8,103.8,117,108.4,95.5,96.9,103.9,101.1,100.6,104.3,98,99.5,97.4,105.6,117.5,107.4,97.8,91.5,107.7,100.1,96.6,106.8,98,98.6) > par10 = 'FALSE' > par9 = '1' > par8 = '2' > par7 = '0' > par6 = '3' > par5 = '12' > par4 = '1' > par3 = '0' > par2 = '1' > par1 = '12' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: AUTHOR(S), (YEAR), YOUR SOFTWARE TITLE (vNUMBER) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_YOURPAGE.wasp/ > #Source of accompanying publication: Office for Research, Development, and Education > #Technical description: Write here your technical program description (don't use hard returns!) > par1 <- as.numeric(par1) #cut off periods > par2 <- as.numeric(par2) #lambda > par3 <- as.numeric(par3) #degree of non-seasonal differencing > par4 <- as.numeric(par4) #degree of seasonal differencing > par5 <- as.numeric(par5) #seasonal period > par6 <- as.numeric(par6) #p > par7 <- as.numeric(par7) #q > par8 <- as.numeric(par8) #P > par9 <- as.numeric(par9) #Q > if (par10 == 'TRUE') par10 <- TRUE > if (par10 == 'FALSE') par10 <- FALSE > if (par2 == 0) x <- log(x) > if (par2 != 0) x <- x^par2 > lx <- length(x) > first <- lx - 2*par1 > nx <- lx - par1 > nx1 <- nx + 1 > fx <- lx - nx > if (fx < 1) { + fx <- par5 + nx1 <- lx + fx - 1 + first <- lx - 2*fx + } > first <- 1 > if (fx < 3) fx <- round(lx/10,0) > (arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML')) Call: arima(x = x[1:nx], order = c(par6, par3, par7), seasonal = list(order = c(par8, par4, par9), period = par5), include.mean = par10, method = "ML") Coefficients: ar1 ar2 ar3 sar1 sar2 sma1 0.1117 0.2332 0.6545 -0.0564 -0.4782 -0.9534 s.e. 0.0957 0.0903 0.1003 0.1314 0.1188 0.4111 sigma^2 estimated as 16.78: log likelihood = -215.09, aic = 444.18 > (forecast <- predict(arima.out,fx)) $pred Time Series: Start = 83 End = 94 Frequency = 1 [1] 100.33295 106.18329 106.95744 108.06327 93.93102 87.83082 108.60657 [8] 98.01994 95.83377 108.55851 93.70043 92.13434 $se Time Series: Start = 83 End = 94 Frequency = 1 [1] 4.395367 4.418126 4.530121 5.458138 5.524827 5.718052 6.179807 6.284542 [9] 6.495230 6.785125 6.912202 7.113987 > (lb <- forecast$pred - 1.96 * forecast$se) Time Series: Start = 83 End = 94 Frequency = 1 [1] 91.71803 97.52377 98.07841 97.36532 83.10236 76.62343 96.49415 85.70224 [9] 83.10312 95.25967 80.15251 78.19093 > (ub <- forecast$pred + 1.96 * forecast$se) Time Series: Start = 83 End = 94 Frequency = 1 [1] 108.9479 114.8428 115.8365 118.7612 104.7597 99.0382 120.7190 110.3376 [9] 108.5644 121.8574 107.2483 106.0778 > if (par2 == 0) { + x <- exp(x) + forecast$pred <- exp(forecast$pred) + lb <- exp(lb) + ub <- exp(ub) + } > if (par2 != 0) { + x <- x^(1/par2) + forecast$pred <- forecast$pred^(1/par2) + lb <- lb^(1/par2) + ub <- ub^(1/par2) + } > if (par2 < 0) { + olb <- lb + lb <- ub + ub <- olb + } > (actandfor <- c(x[1:nx], forecast$pred)) [1] 130.30000 130.90000 104.70000 115.20000 124.50000 112.30000 127.50000 [8] 120.60000 117.50000 117.70000 120.40000 125.00000 131.60000 121.10000 [15] 114.20000 112.10000 127.00000 116.80000 112.00000 129.70000 113.60000 [22] 115.70000 119.50000 125.80000 129.60000 128.00000 112.80000 101.60000 [29] 123.90000 118.80000 109.10000 130.60000 112.40000 111.00000 116.20000 [36] 119.80000 117.20000 127.30000 107.70000 97.50000 120.10000 110.60000 [43] 111.30000 119.80000 105.50000 108.70000 128.70000 119.50000 121.10000 [50] 128.40000 108.80000 107.50000 125.60000 102.90000 107.50000 120.40000 [57] 104.30000 100.60000 121.90000 112.70000 124.90000 123.90000 102.20000 [64] 104.90000 109.80000 98.90000 107.30000 112.60000 104.00000 110.60000 [71] 100.80000 103.80000 117.00000 108.40000 95.50000 96.90000 103.90000 [78] 101.10000 100.60000 104.30000 98.00000 99.50000 100.33295 106.18329 [85] 106.95744 108.06327 93.93102 87.83082 108.60657 98.01994 95.83377 [92] 108.55851 93.70043 92.13434 > (perc.se <- (ub-forecast$pred)/1.96/forecast$pred) Time Series: Start = 83 End = 94 Frequency = 1 [1] 0.04380782 0.04160848 0.04235442 0.05050873 0.05881792 0.06510303 [7] 0.05690086 0.06411493 0.06777601 0.06250201 0.07376917 0.07721319 > postscript(file="/var/www/html/rcomp/tmp/17d4w1229955621.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mar=c(4,4,2,2),las=1) > ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub)) > plot(x,ylim=ylim,type='n',xlim=c(first,lx)) > usr <- par('usr') > rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon') > rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender') > abline(h= (-3:3)*2 , col ='gray', lty =3) > polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA) > lines(nx1:lx, lb , lty=2) > lines(nx1:lx, ub , lty=2) > lines(x, lwd=2) > lines(nx1:lx, forecast$pred , lwd=2 , col ='white') > box() > par(opar) > dev.off() null device 1 > prob.dec <- array(NA, dim=fx) > prob.sdec <- array(NA, dim=fx) > prob.ldec <- array(NA, dim=fx) > prob.pval <- array(NA, dim=fx) > perf.pe <- array(0, dim=fx) > perf.mape <- array(0, dim=fx) > perf.se <- array(0, dim=fx) > perf.mse <- array(0, dim=fx) > perf.rmse <- array(0, dim=fx) > for (i in 1:fx) { + locSD <- (ub[i] - forecast$pred[i]) / 1.96 + perf.pe[i] = (x[nx+i] - forecast$pred[i]) / forecast$pred[i] + perf.mape[i] = perf.mape[i] + abs(perf.pe[i]) + perf.se[i] = (x[nx+i] - forecast$pred[i])^2 + perf.mse[i] = perf.mse[i] + perf.se[i] + prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD) + prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD) + prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD) + prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD) + } > perf.mape = perf.mape / fx > perf.mse = perf.mse / fx > perf.rmse = sqrt(perf.mse) > postscript(file="/var/www/html/rcomp/tmp/2nd4e1229955622.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub))) > dum <- forecast$pred > dum[1:12] <- x[(nx+1):lx] > lines(dum, lty=1) > lines(ub,lty=3) > lines(lb,lty=3) > dev.off() null device 1 > > #Note: the /var/www/html/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/www/html/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'Y[t]',1,header=TRUE) > a<-table.element(a,'F[t]',1,header=TRUE) > a<-table.element(a,'95% LB',1,header=TRUE) > a<-table.element(a,'95% UB',1,header=TRUE) > a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE) > mylab <- paste('P(F[t]>Y[',nx,sep='') > mylab <- paste(mylab,'])',sep='') > a<-table.element(a,mylab,1,header=TRUE) > a<-table.row.end(a) > for (i in (nx-par5):nx) { + a<-table.row.start(a) + a<-table.element(a,i,header=TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.row.end(a) + } > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(x[nx+i],4)) + a<-table.element(a,round(forecast$pred[i],4)) + a<-table.element(a,round(lb[i],4)) + a<-table.element(a,round(ub[i],4)) + a<-table.element(a,round((1-prob.pval[i]),4)) + a<-table.element(a,round((1-prob.dec[i]),4)) + a<-table.element(a,round((1-prob.sdec[i]),4)) + a<-table.element(a,round((1-prob.ldec[i]),4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/35eaq1229955622.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',7,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'% S.E.',1,header=TRUE) > a<-table.element(a,'PE',1,header=TRUE) > a<-table.element(a,'MAPE',1,header=TRUE) > a<-table.element(a,'Sq.E',1,header=TRUE) > a<-table.element(a,'MSE',1,header=TRUE) > a<-table.element(a,'RMSE',1,header=TRUE) > a<-table.row.end(a) > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(perc.se[i],4)) + a<-table.element(a,round(perf.pe[i],4)) + a<-table.element(a,round(perf.mape[i],4)) + a<-table.element(a,round(perf.se[i],4)) + a<-table.element(a,round(perf.mse[i],4)) + a<-table.element(a,round(perf.rmse[i],4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/4k9zv1229955622.tab") > > system("convert tmp/17d4w1229955621.ps tmp/17d4w1229955621.png") > system("convert tmp/2nd4e1229955622.ps tmp/2nd4e1229955622.png") > > > proc.time() user system elapsed 3.850 0.613 4.224