R version 2.8.0 (2008-10-20) Copyright (C) 2008 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- c(17.3,15.4,16.9,20.8,16.4,11.3,17.5,16.6,17.5,19.5,18.8,20.2,19.2,14.4,24.5,25.7,27.1,21,18.6,20,21.8,20.4,18,21.5,19.1,19.7,26,26.3,24.6,22.4,32,24,30,24.1,26.3,29.8,21.9,22.8,29.2,27.5,27.4,31,26.1,22.2,34,26.9,31.9,34.2,31.2,28.5,37.1,36,34.8,32.1,37.2,36.3,39.5,37.1,35.6,36.2,35.9,32.5,39.2,39.4,42.8,34.5,43.7,46.3,40.8,48.4,43.2,48.1,42.8) > par20 = '' > par19 = '' > par18 = '' > par17 = '' > par16 = '' > par15 = '' > par14 = '' > par13 = '' > par12 = '' > par11 = '' > par10 = 'FALSE' > par9 = '1' > par8 = '0' > par7 = '1' > par6 = '3' > par5 = '12' > par4 = '1' > par3 = '0' > par2 = '0.5' > par1 = '12' > ylab = '' > xlab = '' > main = '' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: AUTHOR(S), (YEAR), YOUR SOFTWARE TITLE (vNUMBER) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_YOURPAGE.wasp/ > #Source of accompanying publication: Office for Research, Development, and Education > #Technical description: Write here your technical program description (don't use hard returns!) > par1 <- as.numeric(par1) #cut off periods > par2 <- as.numeric(par2) #lambda > par3 <- as.numeric(par3) #degree of non-seasonal differencing > par4 <- as.numeric(par4) #degree of seasonal differencing > par5 <- as.numeric(par5) #seasonal period > par6 <- as.numeric(par6) #p > par7 <- as.numeric(par7) #q > par8 <- as.numeric(par8) #P > par9 <- as.numeric(par9) #Q > if (par10 == 'TRUE') par10 <- TRUE > if (par10 == 'FALSE') par10 <- FALSE > if (par2 == 0) x <- log(x) > if (par2 != 0) x <- x^par2 > lx <- length(x) > first <- lx - 2*par1 > nx <- lx - par1 > nx1 <- nx + 1 > fx <- lx - nx > if (fx < 1) { + fx <- par5 + nx1 <- lx + fx - 1 + first <- lx - 2*fx + } > first <- 1 > if (fx < 3) fx <- round(lx/10,0) > (arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML')) Call: arima(x = x[1:nx], order = c(par6, par3, par7), seasonal = list(order = c(par8, par4, par9), period = par5), include.mean = par10, method = "ML") Coefficients: ar1 ar2 ar3 ma1 sma1 -0.2992 0.7290 0.5692 0.8777 -0.9712 s.e. 0.1351 0.0912 0.1204 0.1157 0.2699 sigma^2 estimated as 0.0855: log likelihood = -19.07, aic = 50.14 > (forecast <- predict(arima.out,fx)) $pred Time Series: Start = 62 End = 73 Frequency = 1 [1] 5.647511 6.317687 6.433050 6.186713 5.968322 6.177587 5.947085 6.388600 [9] 6.067156 6.141434 6.290016 6.024813 $se Time Series: Start = 62 End = 73 Frequency = 1 [1] 0.3162155 0.3628217 0.4003208 0.4738785 0.4950980 0.5468724 0.5743480 [8] 0.6055918 0.6369580 0.6605907 0.6884466 0.7111834 > (lb <- forecast$pred - 1.96 * forecast$se) Time Series: Start = 62 End = 73 Frequency = 1 [1] 5.027729 5.606557 5.648421 5.257911 4.997930 5.105717 4.821362 5.201640 [9] 4.818719 4.846677 4.940661 4.630893 > (ub <- forecast$pred + 1.96 * forecast$se) Time Series: Start = 62 End = 73 Frequency = 1 [1] 6.267293 7.028818 7.217679 7.115514 6.938714 7.249457 7.072807 7.575560 [9] 7.315594 7.436192 7.639372 7.418732 > if (par2 == 0) { + x <- exp(x) + forecast$pred <- exp(forecast$pred) + lb <- exp(lb) + ub <- exp(ub) + } > if (par2 != 0) { + x <- x^(1/par2) + forecast$pred <- forecast$pred^(1/par2) + lb <- lb^(1/par2) + ub <- ub^(1/par2) + } > if (par2 < 0) { + olb <- lb + lb <- ub + ub <- olb + } > (actandfor <- c(x[1:nx], forecast$pred)) [1] 17.30000 15.40000 16.90000 20.80000 16.40000 11.30000 17.50000 16.60000 [9] 17.50000 19.50000 18.80000 20.20000 19.20000 14.40000 24.50000 25.70000 [17] 27.10000 21.00000 18.60000 20.00000 21.80000 20.40000 18.00000 21.50000 [25] 19.10000 19.70000 26.00000 26.30000 24.60000 22.40000 32.00000 24.00000 [33] 30.00000 24.10000 26.30000 29.80000 21.90000 22.80000 29.20000 27.50000 [41] 27.40000 31.00000 26.10000 22.20000 34.00000 26.90000 31.90000 34.20000 [49] 31.20000 28.50000 37.10000 36.00000 34.80000 32.10000 37.20000 36.30000 [57] 39.50000 37.10000 35.60000 36.20000 35.90000 31.89438 39.91318 41.38414 [65] 38.27541 35.62087 38.16258 35.36781 40.81421 36.81039 37.71722 39.56430 [73] 36.29837 > (perc.se <- (ub-forecast$pred)/1.96/forecast$pred) Time Series: Start = 62 End = 73 Frequency = 1 [1] 0.1181288 0.1213234 0.1320475 0.1646916 0.1793962 0.1924105 0.2114337 [8] 0.2071970 0.2315719 0.2378026 0.2423811 0.2633955 > postscript(file="/var/www/html/rcomp/tmp/1odo51229984249.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mar=c(4,4,2,2),las=1) > ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub)) > plot(x,ylim=ylim,type='n',xlim=c(first,lx)) > usr <- par('usr') > rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon') > rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender') > abline(h= (-3:3)*2 , col ='gray', lty =3) > polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA) > lines(nx1:lx, lb , lty=2) > lines(nx1:lx, ub , lty=2) > lines(x, lwd=2) > lines(nx1:lx, forecast$pred , lwd=2 , col ='white') > box() > par(opar) > dev.off() null device 1 > prob.dec <- array(NA, dim=fx) > prob.sdec <- array(NA, dim=fx) > prob.ldec <- array(NA, dim=fx) > prob.pval <- array(NA, dim=fx) > perf.pe <- array(0, dim=fx) > perf.mape <- array(0, dim=fx) > perf.se <- array(0, dim=fx) > perf.mse <- array(0, dim=fx) > perf.rmse <- array(0, dim=fx) > for (i in 1:fx) { + locSD <- (ub[i] - forecast$pred[i]) / 1.96 + perf.pe[i] = (x[nx+i] - forecast$pred[i]) / forecast$pred[i] + perf.mape[i] = perf.mape[i] + abs(perf.pe[i]) + perf.se[i] = (x[nx+i] - forecast$pred[i])^2 + perf.mse[i] = perf.mse[i] + perf.se[i] + prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD) + prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD) + prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD) + prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD) + } > perf.mape = perf.mape / fx > perf.mse = perf.mse / fx > perf.rmse = sqrt(perf.mse) > postscript(file="/var/www/html/rcomp/tmp/2ov421229984249.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub))) > dum <- forecast$pred > dum[1:12] <- x[(nx+1):lx] > lines(dum, lty=1) > lines(ub,lty=3) > lines(lb,lty=3) > dev.off() null device 1 > > #Note: the /var/www/html/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/www/html/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'Y[t]',1,header=TRUE) > a<-table.element(a,'F[t]',1,header=TRUE) > a<-table.element(a,'95% LB',1,header=TRUE) > a<-table.element(a,'95% UB',1,header=TRUE) > a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE) > mylab <- paste('P(F[t]>Y[',nx,sep='') > mylab <- paste(mylab,'])',sep='') > a<-table.element(a,mylab,1,header=TRUE) > a<-table.row.end(a) > for (i in (nx-par5):nx) { + a<-table.row.start(a) + a<-table.element(a,i,header=TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.row.end(a) + } > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(x[nx+i],4)) + a<-table.element(a,round(forecast$pred[i],4)) + a<-table.element(a,round(lb[i],4)) + a<-table.element(a,round(ub[i],4)) + a<-table.element(a,round((1-prob.pval[i]),4)) + a<-table.element(a,round((1-prob.dec[i]),4)) + a<-table.element(a,round((1-prob.sdec[i]),4)) + a<-table.element(a,round((1-prob.ldec[i]),4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/3nept1229984250.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',7,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'% S.E.',1,header=TRUE) > a<-table.element(a,'PE',1,header=TRUE) > a<-table.element(a,'MAPE',1,header=TRUE) > a<-table.element(a,'Sq.E',1,header=TRUE) > a<-table.element(a,'MSE',1,header=TRUE) > a<-table.element(a,'RMSE',1,header=TRUE) > a<-table.row.end(a) > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(perc.se[i],4)) + a<-table.element(a,round(perf.pe[i],4)) + a<-table.element(a,round(perf.mape[i],4)) + a<-table.element(a,round(perf.se[i],4)) + a<-table.element(a,round(perf.mse[i],4)) + a<-table.element(a,round(perf.rmse[i],4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/40m9t1229984250.tab") > > system("convert tmp/1odo51229984249.ps tmp/1odo51229984249.png") > system("convert tmp/2ov421229984249.ps tmp/2ov421229984249.png") > > > proc.time() user system elapsed 1.206 0.323 1.569