R version 2.8.0 (2008-10-20) Copyright (C) 2008 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- c(98.8,100.5,110.4,96.4,101.9,106.2,81.0,94.7,101.0,109.4,102.3,90.7,96.2,96.1,106.0,103.1,102.0,104.7,86.0,92.1,106.9,112.6,101.7,92.0,97.4,97.0,105.4,102.7,98.1,104.5,87.4,89.9,109.8,111.7,98.6,96.9,95.1,97.0,112.7,102.9,97.4,111.4,87.4,96.8,114.1,110.3,103.9,101.6,94.6,95.9,104.7,102.8,98.1,113.9,80.9,95.7,113.2,105.9,108.8,102.3,99.0,100.7,115.5,100.7,109.9,114.6,85.4,100.5,114.8,116.5,112.9,102.0,106.0,105.3,118.8,106.1,109.3,117.2,92.5,104.2,112.5,122.4,113.3,100.0) > par10 = 'FALSE' > par9 = '0' > par8 = '2' > par7 = '0' > par6 = '3' > par5 = '12' > par4 = '1' > par3 = '0' > par2 = '1' > par1 = '12' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: AUTHOR(S), (YEAR), YOUR SOFTWARE TITLE (vNUMBER) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_YOURPAGE.wasp/ > #Source of accompanying publication: Office for Research, Development, and Education > #Technical description: Write here your technical program description (don't use hard returns!) > par1 <- as.numeric(par1) #cut off periods > par2 <- as.numeric(par2) #lambda > par3 <- as.numeric(par3) #degree of non-seasonal differencing > par4 <- as.numeric(par4) #degree of seasonal differencing > par5 <- as.numeric(par5) #seasonal period > par6 <- as.numeric(par6) #p > par7 <- as.numeric(par7) #q > par8 <- as.numeric(par8) #P > par9 <- as.numeric(par9) #Q > if (par10 == 'TRUE') par10 <- TRUE > if (par10 == 'FALSE') par10 <- FALSE > if (par2 == 0) x <- log(x) > if (par2 != 0) x <- x^par2 > lx <- length(x) > first <- lx - 2*par1 > nx <- lx - par1 > nx1 <- nx + 1 > fx <- lx - nx > if (fx < 1) { + fx <- par5 + nx1 <- lx + fx - 1 + first <- lx - 2*fx + } > first <- 1 > if (fx < 3) fx <- round(lx/10,0) > (arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML')) Call: arima(x = x[1:nx], order = c(par6, par3, par7), seasonal = list(order = c(par8, par4, par9), period = par5), include.mean = par10, method = "ML") Coefficients: ar1 ar2 ar3 sar1 sar2 -0.0536 0.2923 0.5069 -0.3647 -0.2500 s.e. 0.1118 0.1121 0.1273 0.1679 0.1727 sigma^2 estimated as 12.51: log likelihood = -162.74, aic = 337.48 > (forecast <- predict(arima.out,fx)) $pred Time Series: Start = 73 End = 84 Frequency = 1 [1] 103.9503 102.8663 115.8188 105.6940 107.7019 115.9703 88.0607 100.6949 [9] 116.2753 115.4810 111.4686 103.3055 $se Time Series: Start = 73 End = 84 Frequency = 1 [1] 3.537194 3.542272 3.692953 4.057822 4.059565 4.184406 4.266487 4.277895 [9] 4.341594 4.367363 4.381323 4.409237 > (lb <- forecast$pred - 1.96 * forecast$se) Time Series: Start = 73 End = 84 Frequency = 1 [1] 97.01738 95.92342 108.58063 97.74067 99.74518 107.76884 79.69839 [8] 92.31027 107.76575 106.92097 102.88124 94.66338 > (ub <- forecast$pred + 1.96 * forecast$se) Time Series: Start = 73 End = 84 Frequency = 1 [1] 110.88318 109.80913 123.05701 113.64733 115.65868 124.17171 96.42302 [8] 109.07962 124.78480 124.04103 120.05602 111.94759 > if (par2 == 0) { + x <- exp(x) + forecast$pred <- exp(forecast$pred) + lb <- exp(lb) + ub <- exp(ub) + } > if (par2 != 0) { + x <- x^(1/par2) + forecast$pred <- forecast$pred^(1/par2) + lb <- lb^(1/par2) + ub <- ub^(1/par2) + } > if (par2 < 0) { + olb <- lb + lb <- ub + ub <- olb + } > (actandfor <- c(x[1:nx], forecast$pred)) [1] 98.8000 100.5000 110.4000 96.4000 101.9000 106.2000 81.0000 94.7000 [9] 101.0000 109.4000 102.3000 90.7000 96.2000 96.1000 106.0000 103.1000 [17] 102.0000 104.7000 86.0000 92.1000 106.9000 112.6000 101.7000 92.0000 [25] 97.4000 97.0000 105.4000 102.7000 98.1000 104.5000 87.4000 89.9000 [33] 109.8000 111.7000 98.6000 96.9000 95.1000 97.0000 112.7000 102.9000 [41] 97.4000 111.4000 87.4000 96.8000 114.1000 110.3000 103.9000 101.6000 [49] 94.6000 95.9000 104.7000 102.8000 98.1000 113.9000 80.9000 95.7000 [57] 113.2000 105.9000 108.8000 102.3000 99.0000 100.7000 115.5000 100.7000 [65] 109.9000 114.6000 85.4000 100.5000 114.8000 116.5000 112.9000 102.0000 [73] 103.9503 102.8663 115.8188 105.6940 107.7019 115.9703 88.0607 100.6949 [81] 116.2753 115.4810 111.4686 103.3055 > (perc.se <- (ub-forecast$pred)/1.96/forecast$pred) Time Series: Start = 73 End = 84 Frequency = 1 [1] 0.03402775 0.03443570 0.03188560 0.03839217 0.03769260 0.03608171 [7] 0.04844938 0.04248371 0.03733892 0.03781889 0.03930543 0.04268154 > postscript(file="/var/www/html/rcomp/tmp/1fiyc1230050828.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mar=c(4,4,2,2),las=1) > ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub)) > plot(x,ylim=ylim,type='n',xlim=c(first,lx)) > usr <- par('usr') > rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon') > rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender') > abline(h= (-3:3)*2 , col ='gray', lty =3) > polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA) > lines(nx1:lx, lb , lty=2) > lines(nx1:lx, ub , lty=2) > lines(x, lwd=2) > lines(nx1:lx, forecast$pred , lwd=2 , col ='white') > box() > par(opar) > dev.off() null device 1 > prob.dec <- array(NA, dim=fx) > prob.sdec <- array(NA, dim=fx) > prob.ldec <- array(NA, dim=fx) > prob.pval <- array(NA, dim=fx) > perf.pe <- array(0, dim=fx) > perf.mape <- array(0, dim=fx) > perf.se <- array(0, dim=fx) > perf.mse <- array(0, dim=fx) > perf.rmse <- array(0, dim=fx) > for (i in 1:fx) { + locSD <- (ub[i] - forecast$pred[i]) / 1.96 + perf.pe[i] = (x[nx+i] - forecast$pred[i]) / forecast$pred[i] + perf.mape[i] = perf.mape[i] + abs(perf.pe[i]) + perf.se[i] = (x[nx+i] - forecast$pred[i])^2 + perf.mse[i] = perf.mse[i] + perf.se[i] + prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD) + prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD) + prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD) + prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD) + } > perf.mape = perf.mape / fx > perf.mse = perf.mse / fx > perf.rmse = sqrt(perf.mse) > postscript(file="/var/www/html/rcomp/tmp/2hiww1230050828.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub))) > dum <- forecast$pred > dum[1:12] <- x[(nx+1):lx] > lines(dum, lty=1) > lines(ub,lty=3) > lines(lb,lty=3) > dev.off() null device 1 > > #Note: the /var/www/html/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/www/html/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'Y[t]',1,header=TRUE) > a<-table.element(a,'F[t]',1,header=TRUE) > a<-table.element(a,'95% LB',1,header=TRUE) > a<-table.element(a,'95% UB',1,header=TRUE) > a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE) > mylab <- paste('P(F[t]>Y[',nx,sep='') > mylab <- paste(mylab,'])',sep='') > a<-table.element(a,mylab,1,header=TRUE) > a<-table.row.end(a) > for (i in (nx-par5):nx) { + a<-table.row.start(a) + a<-table.element(a,i,header=TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.row.end(a) + } > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(x[nx+i],4)) + a<-table.element(a,round(forecast$pred[i],4)) + a<-table.element(a,round(lb[i],4)) + a<-table.element(a,round(ub[i],4)) + a<-table.element(a,round((1-prob.pval[i]),4)) + a<-table.element(a,round((1-prob.dec[i]),4)) + a<-table.element(a,round((1-prob.sdec[i]),4)) + a<-table.element(a,round((1-prob.ldec[i]),4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/33hir1230050828.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',7,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'% S.E.',1,header=TRUE) > a<-table.element(a,'PE',1,header=TRUE) > a<-table.element(a,'MAPE',1,header=TRUE) > a<-table.element(a,'Sq.E',1,header=TRUE) > a<-table.element(a,'MSE',1,header=TRUE) > a<-table.element(a,'RMSE',1,header=TRUE) > a<-table.row.end(a) > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(perc.se[i],4)) + a<-table.element(a,round(perf.pe[i],4)) + a<-table.element(a,round(perf.mape[i],4)) + a<-table.element(a,round(perf.se[i],4)) + a<-table.element(a,round(perf.mse[i],4)) + a<-table.element(a,round(perf.rmse[i],4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/4dru81230050828.tab") > system("convert tmp/1fiyc1230050828.ps tmp/1fiyc1230050828.png") > system("convert tmp/2hiww1230050828.ps tmp/2hiww1230050828.png") > > > proc.time() user system elapsed 1.346 0.399 1.590