R version 2.8.0 (2008-10-20) Copyright (C) 2008 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- c(528.00,478.00,469.00,490.00,493.00,508.00,517.00,514.00,510.00,527.00,542.00,565.00,555.00,499.00,511.00,526.00,532.00,549.00,561.00,557.00,566.00,588.00,620.00,626.00,620.00,573.00,573.00,574.00,580.00,590.00,593.00,597.00,595.00,612.00,628.00,629.00,621.00,569.00,567.00,573.00,584.00,589.00,591.00,595.00,594.00,611.00,613.00,611.00,594.00,543.00,537.00,544.00,555.00,561.00,562.00,555.00,547.00,565.00,578.00,580.00,569.00,507.00,501.00,509.00,510.00,517.00,519.00,512.00,509.00) > par20 = '' > par19 = '' > par18 = '' > par17 = '' > par16 = '' > par15 = '' > par14 = '' > par13 = '' > par12 = '' > par11 = '' > par10 = 'FALSE' > par9 = '1' > par8 = '0' > par7 = '2' > par6 = '1' > par5 = '12' > par4 = '1' > par3 = '1' > par2 = '1' > par1 = '12' > ylab = '' > xlab = '' > main = '' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: AUTHOR(S), (YEAR), YOUR SOFTWARE TITLE (vNUMBER) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_YOURPAGE.wasp/ > #Source of accompanying publication: Office for Research, Development, and Education > #Technical description: Write here your technical program description (don't use hard returns!) > par1 <- as.numeric(par1) #cut off periods > par2 <- as.numeric(par2) #lambda > par3 <- as.numeric(par3) #degree of non-seasonal differencing > par4 <- as.numeric(par4) #degree of seasonal differencing > par5 <- as.numeric(par5) #seasonal period > par6 <- as.numeric(par6) #p > par7 <- as.numeric(par7) #q > par8 <- as.numeric(par8) #P > par9 <- as.numeric(par9) #Q > if (par10 == 'TRUE') par10 <- TRUE > if (par10 == 'FALSE') par10 <- FALSE > if (par2 == 0) x <- log(x) > if (par2 != 0) x <- x^par2 > lx <- length(x) > first <- lx - 2*par1 > nx <- lx - par1 > nx1 <- nx + 1 > fx <- lx - nx > if (fx < 1) { + fx <- par5 + nx1 <- lx + fx - 1 + first <- lx - 2*fx + } > first <- 1 > if (fx < 3) fx <- round(lx/10,0) > (arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML')) Call: arima(x = x[1:nx], order = c(par6, par3, par7), seasonal = list(order = c(par8, par4, par9), period = par5), include.mean = par10, method = "ML") Coefficients: ar1 ma1 ma2 sma1 0.9518 -0.9928 0.1511 -0.4944 s.e. 0.0890 0.1646 0.1473 0.2949 sigma^2 estimated as 54.3: log likelihood = -151.94, aic = 313.88 > (forecast <- predict(arima.out,fx)) $pred Time Series: Start = 58 End = 69 Frequency = 1 [1] 562.1352 569.7614 568.7489 553.2010 499.2817 493.4114 497.9676 505.1436 [9] 510.1980 510.5702 505.9876 499.8229 $se Time Series: Start = 58 End = 69 Frequency = 1 [1] 7.378268 10.221556 12.918207 15.565884 18.199041 20.833994 23.475765 [8] 26.125405 28.782038 31.443866 34.108680 36.774144 > (lb <- forecast$pred - 1.96 * forecast$se) Time Series: Start = 58 End = 69 Frequency = 1 [1] 547.6738 549.7272 543.4292 522.6918 463.6116 452.5768 451.9551 453.9378 [9] 453.7852 448.9402 439.1346 427.7456 > (ub <- forecast$pred + 1.96 * forecast$se) Time Series: Start = 58 End = 69 Frequency = 1 [1] 576.5966 589.7957 594.0685 583.7101 534.9518 534.2460 543.9801 556.3494 [9] 566.6108 572.2002 572.8406 571.9002 > if (par2 == 0) { + x <- exp(x) + forecast$pred <- exp(forecast$pred) + lb <- exp(lb) + ub <- exp(ub) + } > if (par2 != 0) { + x <- x^(1/par2) + forecast$pred <- forecast$pred^(1/par2) + lb <- lb^(1/par2) + ub <- ub^(1/par2) + } > if (par2 < 0) { + olb <- lb + lb <- ub + ub <- olb + } > (actandfor <- c(x[1:nx], forecast$pred)) [1] 528.0000 478.0000 469.0000 490.0000 493.0000 508.0000 517.0000 514.0000 [9] 510.0000 527.0000 542.0000 565.0000 555.0000 499.0000 511.0000 526.0000 [17] 532.0000 549.0000 561.0000 557.0000 566.0000 588.0000 620.0000 626.0000 [25] 620.0000 573.0000 573.0000 574.0000 580.0000 590.0000 593.0000 597.0000 [33] 595.0000 612.0000 628.0000 629.0000 621.0000 569.0000 567.0000 573.0000 [41] 584.0000 589.0000 591.0000 595.0000 594.0000 611.0000 613.0000 611.0000 [49] 594.0000 543.0000 537.0000 544.0000 555.0000 561.0000 562.0000 555.0000 [57] 547.0000 562.1352 569.7614 568.7489 553.2010 499.2817 493.4114 497.9676 [65] 505.1436 510.1980 510.5702 505.9876 499.8229 > (perc.se <- (ub-forecast$pred)/1.96/forecast$pred) Time Series: Start = 58 End = 69 Frequency = 1 [1] 0.01312543 0.01794006 0.02271338 0.02813785 0.03645045 0.04222439 [7] 0.04714316 0.05171877 0.05641347 0.06158578 0.06741011 0.07357435 > postscript(file="/var/www/html/rcomp/tmp/1bws91230121151.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mar=c(4,4,2,2),las=1) > ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub)) > plot(x,ylim=ylim,type='n',xlim=c(first,lx)) > usr <- par('usr') > rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon') > rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender') > abline(h= (-3:3)*2 , col ='gray', lty =3) > polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA) > lines(nx1:lx, lb , lty=2) > lines(nx1:lx, ub , lty=2) > lines(x, lwd=2) > lines(nx1:lx, forecast$pred , lwd=2 , col ='white') > box() > par(opar) > dev.off() null device 1 > prob.dec <- array(NA, dim=fx) > prob.sdec <- array(NA, dim=fx) > prob.ldec <- array(NA, dim=fx) > prob.pval <- array(NA, dim=fx) > perf.pe <- array(0, dim=fx) > perf.mape <- array(0, dim=fx) > perf.se <- array(0, dim=fx) > perf.mse <- array(0, dim=fx) > perf.rmse <- array(0, dim=fx) > for (i in 1:fx) { + locSD <- (ub[i] - forecast$pred[i]) / 1.96 + perf.pe[i] = (x[nx+i] - forecast$pred[i]) / forecast$pred[i] + perf.mape[i] = perf.mape[i] + abs(perf.pe[i]) + perf.se[i] = (x[nx+i] - forecast$pred[i])^2 + perf.mse[i] = perf.mse[i] + perf.se[i] + prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD) + prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD) + prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD) + prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD) + } > perf.mape = perf.mape / fx > perf.mse = perf.mse / fx > perf.rmse = sqrt(perf.mse) > postscript(file="/var/www/html/rcomp/tmp/216b21230121151.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub))) > dum <- forecast$pred > dum[1:12] <- x[(nx+1):lx] > lines(dum, lty=1) > lines(ub,lty=3) > lines(lb,lty=3) > dev.off() null device 1 > > #Note: the /var/www/html/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/www/html/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'Y[t]',1,header=TRUE) > a<-table.element(a,'F[t]',1,header=TRUE) > a<-table.element(a,'95% LB',1,header=TRUE) > a<-table.element(a,'95% UB',1,header=TRUE) > a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE) > mylab <- paste('P(F[t]>Y[',nx,sep='') > mylab <- paste(mylab,'])',sep='') > a<-table.element(a,mylab,1,header=TRUE) > a<-table.row.end(a) > for (i in (nx-par5):nx) { + a<-table.row.start(a) + a<-table.element(a,i,header=TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.row.end(a) + } > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(x[nx+i],4)) + a<-table.element(a,round(forecast$pred[i],4)) + a<-table.element(a,round(lb[i],4)) + a<-table.element(a,round(ub[i],4)) + a<-table.element(a,round((1-prob.pval[i]),4)) + a<-table.element(a,round((1-prob.dec[i]),4)) + a<-table.element(a,round((1-prob.sdec[i]),4)) + a<-table.element(a,round((1-prob.ldec[i]),4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/31shw1230121151.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',7,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'% S.E.',1,header=TRUE) > a<-table.element(a,'PE',1,header=TRUE) > a<-table.element(a,'MAPE',1,header=TRUE) > a<-table.element(a,'Sq.E',1,header=TRUE) > a<-table.element(a,'MSE',1,header=TRUE) > a<-table.element(a,'RMSE',1,header=TRUE) > a<-table.row.end(a) > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(perc.se[i],4)) + a<-table.element(a,round(perf.pe[i],4)) + a<-table.element(a,round(perf.mape[i],4)) + a<-table.element(a,round(perf.se[i],4)) + a<-table.element(a,round(perf.mse[i],4)) + a<-table.element(a,round(perf.rmse[i],4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/49i5k1230121151.tab") > > system("convert tmp/1bws91230121151.ps tmp/1bws91230121151.png") > system("convert tmp/216b21230121151.ps tmp/216b21230121151.png") > > > proc.time() user system elapsed 0.933 0.325 1.054