R version 2.6.0 (2007-10-03) Copyright (C) 2007 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- c(104.2,103.2,112.7,106.4,102.6,110.6,95.2,89,112.5,116.8,107.2,113.6,101.8,102.6,122.7,110.3,110.5,121.6,100.3,100.7,123.4,127.1,124.1,131.2,111.6,114.2,130.1,125.9,119,133.8,107.5,113.5,134.4,126.8,135.6,139.9,129.8,131,153.1,134.1,144.1,155.9,123.3,128.1,144.3,153,149.9,150.9) > par10 = 'FALSE' > par9 = '1' > par8 = '0' > par7 = '0' > par6 = '3' > par5 = '12' > par4 = '1' > par3 = '0' > par2 = '1' > par1 = '24' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: AUTHOR(S), (YEAR), YOUR SOFTWARE TITLE (vNUMBER) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_YOURPAGE.wasp/ > #Source of accompanying publication: Office for Research, Development, and Education > #Technical description: Write here your technical program description (don't use hard returns!) > par1 <- as.numeric(par1) #cut off periods > par2 <- as.numeric(par2) #lambda > par3 <- as.numeric(par3) #degree of non-seasonal differencing > par4 <- as.numeric(par4) #degree of seasonal differencing > par5 <- as.numeric(par5) #seasonal period > par6 <- as.numeric(par6) #p > par7 <- as.numeric(par7) #q > par8 <- as.numeric(par8) #P > par9 <- as.numeric(par9) #Q > if (par10 == 'TRUE') par10 <- TRUE > if (par10 == 'FALSE') par10 <- FALSE > if (par2 == 0) x <- log(x) > if (par2 != 0) x <- x^par2 > lx <- length(x) > first <- lx - 2*par1 > nx <- lx - par1 > nx1 <- nx + 1 > fx <- lx - nx > if (fx < 1) { + fx <- par5 + nx1 <- lx + fx - 1 + first <- lx - 2*fx + } > first <- 1 > if (fx < 3) fx <- round(lx/10,0) > (arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML')) Call: arima(x = x[1:nx], order = c(par6, par3, par7), seasonal = list(order = c(par8, par4, par9), period = par5), include.mean = par10, method = "ML") Coefficients: ar1 ar2 ar3 sma1 0.4945 0.2236 0.2651 -0.5593 s.e. 0.3845 0.3581 0.4525 1.8976 sigma^2 estimated as 16.29: log likelihood = -36.2, aic = 82.4 > (forecast <- predict(arima.out,fx)) $pred Time Series: Start = 25 End = 48 Frequency = 1 [1] 117.7975 118.3287 133.8961 123.5360 121.8798 131.4493 112.3903 109.7397 [9] 132.5162 136.3211 130.2159 136.5410 124.2507 124.3355 139.7255 129.4727 [17] 127.7115 137.2061 118.1150 115.4039 138.1235 141.8782 135.7194 141.9916 $se Time Series: Start = 25 End = 48 Frequency = 1 [1] 4.466889 4.904536 5.263239 5.812431 6.204998 6.557114 6.908615 [8] 7.222677 7.514785 7.795398 8.048697 8.289117 9.501734 9.938439 [15] 10.335215 10.788199 11.178011 11.543291 11.899878 12.232422 12.548650 [22] 12.855922 13.137894 13.409270 > (lb <- forecast$pred - 1.96 * forecast$se) Time Series: Start = 25 End = 48 Frequency = 1 [1] 109.04239 108.71579 123.58017 112.14367 109.71797 118.59739 98.84943 [8] 95.58326 117.78725 121.04215 114.44043 120.29428 105.62725 104.85614 [15] 119.46850 108.32781 105.80256 114.58125 94.79121 91.42836 113.52814 [22] 116.68061 109.96911 115.70948 > (ub <- forecast$pred + 1.96 * forecast$se) Time Series: Start = 25 End = 48 Frequency = 1 [1] 126.5526 127.9416 144.2121 134.9284 134.0416 144.3013 125.9312 123.8961 [9] 147.2452 151.6001 145.9913 152.7876 142.8741 143.8148 159.9825 150.6176 [17] 149.6204 159.8309 141.4387 139.3795 162.7188 167.0758 161.4697 168.2738 > if (par2 == 0) { + x <- exp(x) + forecast$pred <- exp(forecast$pred) + lb <- exp(lb) + ub <- exp(ub) + } > if (par2 != 0) { + x <- x^(1/par2) + forecast$pred <- forecast$pred^(1/par2) + lb <- lb^(1/par2) + ub <- ub^(1/par2) + } > if (par2 < 0) { + olb <- lb + lb <- ub + ub <- olb + } > (actandfor <- c(x[1:nx], forecast$pred)) [1] 104.2000 103.2000 112.7000 106.4000 102.6000 110.6000 95.2000 89.0000 [9] 112.5000 116.8000 107.2000 113.6000 101.8000 102.6000 122.7000 110.3000 [17] 110.5000 121.6000 100.3000 100.7000 123.4000 127.1000 124.1000 131.2000 [25] 117.7975 118.3287 133.8961 123.5360 121.8798 131.4493 112.3903 109.7397 [33] 132.5162 136.3211 130.2159 136.5410 124.2507 124.3355 139.7255 129.4727 [41] 127.7115 137.2061 118.1150 115.4039 138.1235 141.8782 135.7194 141.9916 > (perc.se <- (ub-forecast$pred)/1.96/forecast$pred) Time Series: Start = 25 End = 48 Frequency = 1 [1] 0.03792007 0.04144842 0.03930838 0.04705049 0.05091081 0.04988320 [7] 0.06146984 0.06581644 0.05670842 0.05718408 0.06181041 0.06070792 [13] 0.07647231 0.07993245 0.07396799 0.08332413 0.08752551 0.08413103 [19] 0.10074826 0.10599660 0.09085095 0.09061237 0.09680189 0.09443703 > postscript(file="/var/www/html/rcomp/tmp/1pv4z1199735368.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mar=c(4,4,2,2),las=1) > ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub)) > plot(x,ylim=ylim,type='n',xlim=c(first,lx)) > usr <- par('usr') > rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon') > rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender') > abline(h= (-3:3)*2 , col ='gray', lty =3) > polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA) > lines(nx1:lx, lb , lty=2) > lines(nx1:lx, ub , lty=2) > lines(x, lwd=2) > lines(nx1:lx, forecast$pred , lwd=2 , col ='white') > box() > par(opar) > dev.off() null device 1 > prob.dec <- array(NA, dim=fx) > prob.sdec <- array(NA, dim=fx) > prob.ldec <- array(NA, dim=fx) > prob.pval <- array(NA, dim=fx) > perf.pe <- array(0, dim=fx) > perf.mape <- array(0, dim=fx) > perf.se <- array(0, dim=fx) > perf.mse <- array(0, dim=fx) > perf.rmse <- array(0, dim=fx) > for (i in 1:fx) { + locSD <- (ub[i] - forecast$pred[i]) / 1.96 + perf.pe[i] = (x[nx+i] - forecast$pred[i]) / forecast$pred[i] + perf.mape[i] = perf.mape[i] + abs(perf.pe[i]) + perf.se[i] = (x[nx+i] - forecast$pred[i])^2 + perf.mse[i] = perf.mse[i] + perf.se[i] + prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD) + prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD) + prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD) + prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD) + } > perf.mape = perf.mape / fx > perf.mse = perf.mse / fx > perf.rmse = sqrt(perf.mse) > postscript(file="/var/www/html/rcomp/tmp/2oo4l1199735368.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub))) > dum <- forecast$pred > dum[1:12] <- x[(nx+1):lx] Warning message: In NextMethod("[<-") : number of items to replace is not a multiple of replacement length > lines(dum, lty=1) > lines(ub,lty=3) > lines(lb,lty=3) > dev.off() null device 1 > load(file='/var/www/html/rcomp/createtable') > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'Y[t]',1,header=TRUE) > a<-table.element(a,'F[t]',1,header=TRUE) > a<-table.element(a,'95% LB',1,header=TRUE) > a<-table.element(a,'95% UB',1,header=TRUE) > a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE) > mylab <- paste('P(F[t]>Y[',nx,sep='') > mylab <- paste(mylab,'])',sep='') > a<-table.element(a,mylab,1,header=TRUE) > a<-table.row.end(a) > for (i in (nx-par5):nx) { + a<-table.row.start(a) + a<-table.element(a,i,header=TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.row.end(a) + } > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(x[nx+i],4)) + a<-table.element(a,round(forecast$pred[i],4)) + a<-table.element(a,round(lb[i],4)) + a<-table.element(a,round(ub[i],4)) + a<-table.element(a,round((1-prob.pval[i]),4)) + a<-table.element(a,round((1-prob.dec[i]),4)) + a<-table.element(a,round((1-prob.sdec[i]),4)) + a<-table.element(a,round((1-prob.ldec[i]),4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/3mmmt1199735369.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',7,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'% S.E.',1,header=TRUE) > a<-table.element(a,'PE',1,header=TRUE) > a<-table.element(a,'MAPE',1,header=TRUE) > a<-table.element(a,'Sq.E',1,header=TRUE) > a<-table.element(a,'MSE',1,header=TRUE) > a<-table.element(a,'RMSE',1,header=TRUE) > a<-table.row.end(a) > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(perc.se[i],4)) + a<-table.element(a,round(perf.pe[i],4)) + a<-table.element(a,round(perf.mape[i],4)) + a<-table.element(a,round(perf.se[i],4)) + a<-table.element(a,round(perf.mse[i],4)) + a<-table.element(a,round(perf.rmse[i],4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/433rw1199735369.tab") > > system("convert tmp/1pv4z1199735368.ps tmp/1pv4z1199735368.png") > system("convert tmp/2oo4l1199735368.ps tmp/2oo4l1199735368.png") > > > proc.time() user system elapsed 1.133 0.319 1.295