R version 2.6.1 (2007-11-26) Copyright (C) 2007 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- c(85.6,89,97.5,104,99.4,103.2,103,91.2,85.9,80.7,86.7,80.7,81.5,83.4,83.5,89.5,85.8,77.4,67.5,63.7,59.4,62,62.4,58.1,58,56.3,61.4,59.8,54.3,47,50.5,48.1,58.8,70.4,71.9,73.3,83.5,90.1,101.3,98.3,106.7,109.9,111.1,119,120.7,104.5,121.6,129.6,124.5,130.1,142.3,140,143.3,113.4,113.8,120.7,112.9,115.5,121.9,119.3,111,114.2,113.5,94,83.2,82.8,85.8,88.7,105.3,113.1,113.8,109.4) > par10 = 'TRUE' > par9 = '0' > par8 = '0' > par7 = '1' > par6 = '0' > par5 = '12' > par4 = '0' > par3 = '1' > par2 = '2.0' > par1 = '12' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: AUTHOR(S), (YEAR), YOUR SOFTWARE TITLE (vNUMBER) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_YOURPAGE.wasp/ > #Source of accompanying publication: Office for Research, Development, and Education > #Technical description: Write here your technical program description (don't use hard returns!) > par1 <- as.numeric(par1) #cut off periods > par2 <- as.numeric(par2) #lambda > par3 <- as.numeric(par3) #degree of non-seasonal differencing > par4 <- as.numeric(par4) #degree of seasonal differencing > par5 <- as.numeric(par5) #seasonal period > par6 <- as.numeric(par6) #p > par7 <- as.numeric(par7) #q > par8 <- as.numeric(par8) #P > par9 <- as.numeric(par9) #Q > if (par10 == 'TRUE') par10 <- TRUE > if (par10 == 'FALSE') par10 <- FALSE > if (par2 == 0) x <- log(x) > if (par2 != 0) x <- x^par2 > lx <- length(x) > first <- lx - 2*par1 > nx <- lx - par1 > nx1 <- nx + 1 > fx <- lx - nx > if (fx < 1) { + fx <- par5 + nx1 <- lx + fx - 1 + first <- lx - 2*fx + } > first <- 1 > if (fx < 3) fx <- round(lx/10,0) > (arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML')) Call: arima(x = x[1:nx], order = c(par6, par3, par7), seasonal = list(order = c(par8, par4, par9), period = par5), include.mean = par10, method = "ML") Coefficients: ma1 -0.0767 s.e. 0.1382 sigma^2 estimated as 2675416: log likelihood = -520.31, aic = 1044.62 > (forecast <- predict(arima.out,fx)) $pred Time Series: Start = 61 End = 72 Frequency = 1 [1] 14271.45 14271.45 14271.45 14271.45 14271.45 14271.45 14271.45 14271.45 [9] 14271.45 14271.45 14271.45 14271.45 $se Time Series: Start = 61 End = 72 Frequency = 1 [1] 1635.670 2226.231 2690.129 3085.042 3434.847 3752.182 4044.695 4317.435 [9] 4573.941 4816.807 5048.001 5269.061 > (lb <- forecast$pred - 1.96 * forecast$se) Time Series: Start = 61 End = 72 Frequency = 1 [1] 11065.534 9908.034 8998.794 8224.764 7539.146 6917.171 6343.845 [8] 5809.274 5306.523 4830.506 4377.365 3944.087 > (ub <- forecast$pred + 1.96 * forecast$se) Time Series: Start = 61 End = 72 Frequency = 1 [1] 17477.36 18634.86 19544.10 20318.13 21003.75 21625.72 22199.05 22733.62 [9] 23236.37 23712.39 24165.53 24598.81 > if (par2 == 0) { + x <- exp(x) + forecast$pred <- exp(forecast$pred) + lb <- exp(lb) + ub <- exp(ub) + } > if (par2 != 0) { + x <- x^(1/par2) + forecast$pred <- forecast$pred^(1/par2) + lb <- lb^(1/par2) + ub <- ub^(1/par2) + } > if (par2 < 0) { + olb <- lb + lb <- ub + ub <- olb + } > (actandfor <- c(x[1:nx], forecast$pred)) [1] 85.6000 89.0000 97.5000 104.0000 99.4000 103.2000 103.0000 91.2000 [9] 85.9000 80.7000 86.7000 80.7000 81.5000 83.4000 83.5000 89.5000 [17] 85.8000 77.4000 67.5000 63.7000 59.4000 62.0000 62.4000 58.1000 [25] 58.0000 56.3000 61.4000 59.8000 54.3000 47.0000 50.5000 48.1000 [33] 58.8000 70.4000 71.9000 73.3000 83.5000 90.1000 101.3000 98.3000 [41] 106.7000 109.9000 111.1000 119.0000 120.7000 104.5000 121.6000 129.6000 [49] 124.5000 130.1000 142.3000 140.0000 143.3000 113.4000 113.8000 120.7000 [57] 112.9000 115.5000 121.9000 119.3000 119.4632 119.4632 119.4632 119.4632 [65] 119.4632 119.4632 119.4632 119.4632 119.4632 119.4632 119.4632 119.4632 > (perc.se <- (ub-forecast$pred)/1.96/forecast$pred) Time Series: Start = 61 End = 72 Frequency = 1 [1] 0.05440497 0.07280188 0.08685563 0.09856388 0.10874984 0.11784739 [7] 0.12611817 0.13373417 0.14081554 0.14745008 0.15370419 0.15962955 > postscript(file="/var/www/html/rcomp/tmp/1mxja1199886364.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mar=c(4,4,2,2),las=1) > ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub)) > plot(x,ylim=ylim,type='n',xlim=c(first,lx)) > usr <- par('usr') > rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon') > rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender') > abline(h= (-3:3)*2 , col ='gray', lty =3) > polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA) > lines(nx1:lx, lb , lty=2) > lines(nx1:lx, ub , lty=2) > lines(x, lwd=2) > lines(nx1:lx, forecast$pred , lwd=2 , col ='white') > box() > par(opar) > dev.off() null device 1 > prob.dec <- array(NA, dim=fx) > prob.sdec <- array(NA, dim=fx) > prob.ldec <- array(NA, dim=fx) > prob.pval <- array(NA, dim=fx) > perf.pe <- array(0, dim=fx) > perf.mape <- array(0, dim=fx) > perf.se <- array(0, dim=fx) > perf.mse <- array(0, dim=fx) > perf.rmse <- array(0, dim=fx) > for (i in 1:fx) { + locSD <- (ub[i] - forecast$pred[i]) / 1.96 + perf.pe[i] = (x[nx+i] - forecast$pred[i]) / forecast$pred[i] + perf.mape[i] = perf.mape[i] + abs(perf.pe[i]) + perf.se[i] = (x[nx+i] - forecast$pred[i])^2 + perf.mse[i] = perf.mse[i] + perf.se[i] + prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD) + prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD) + prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD) + prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD) + } > perf.mape = perf.mape / fx > perf.mse = perf.mse / fx > perf.rmse = sqrt(perf.mse) > postscript(file="/var/www/html/rcomp/tmp/2l4oz1199886365.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub))) > dum <- forecast$pred > dum[1:12] <- x[(nx+1):lx] > lines(dum, lty=1) > lines(ub,lty=3) > lines(lb,lty=3) > dev.off() null device 1 > load(file='/var/www/html/rcomp/createtable') > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'Y[t]',1,header=TRUE) > a<-table.element(a,'F[t]',1,header=TRUE) > a<-table.element(a,'95% LB',1,header=TRUE) > a<-table.element(a,'95% UB',1,header=TRUE) > a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE) > mylab <- paste('P(F[t]>Y[',nx,sep='') > mylab <- paste(mylab,'])',sep='') > a<-table.element(a,mylab,1,header=TRUE) > a<-table.row.end(a) > for (i in (nx-par5):nx) { + a<-table.row.start(a) + a<-table.element(a,i,header=TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.row.end(a) + } > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(x[nx+i],4)) + a<-table.element(a,round(forecast$pred[i],4)) + a<-table.element(a,round(lb[i],4)) + a<-table.element(a,round(ub[i],4)) + a<-table.element(a,round((1-prob.pval[i]),4)) + a<-table.element(a,round((1-prob.dec[i]),4)) + a<-table.element(a,round((1-prob.sdec[i]),4)) + a<-table.element(a,round((1-prob.ldec[i]),4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/3703i1199886365.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',7,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'% S.E.',1,header=TRUE) > a<-table.element(a,'PE',1,header=TRUE) > a<-table.element(a,'MAPE',1,header=TRUE) > a<-table.element(a,'Sq.E',1,header=TRUE) > a<-table.element(a,'MSE',1,header=TRUE) > a<-table.element(a,'RMSE',1,header=TRUE) > a<-table.row.end(a) > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(perc.se[i],4)) + a<-table.element(a,round(perf.pe[i],4)) + a<-table.element(a,round(perf.mape[i],4)) + a<-table.element(a,round(perf.se[i],4)) + a<-table.element(a,round(perf.mse[i],4)) + a<-table.element(a,round(perf.rmse[i],4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/40c3q1199886365.tab") > > system("convert tmp/1mxja1199886364.ps tmp/1mxja1199886364.png") > system("convert tmp/2l4oz1199886365.ps tmp/2l4oz1199886365.png") > > > proc.time() user system elapsed 1.532 0.529 1.675