Home » date » 2008 » Nov » 15 »

Q3 - Consumptieprijsindex met seasonal dummies en lineaire trend

*The author of this computation has been verified*
R Software Module: rwasp_multipleregression.wasp (opens new window with default values)
Title produced by software: Multiple Regression
Date of computation: Sat, 15 Nov 2008 14:54:28 -0700
 
Cite this page as follows:
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL http://www.freestatistics.org/blog/date/2008/Nov/15/t1226786297jom1zoesj8oua7o.htm/, Retrieved Sat, 15 Nov 2008 21:58:17 +0000
 
BibTeX entries for LaTeX users:
@Manual{KEY,
    author = {{YOUR NAME}},
    publisher = {Office for Research Development and Education},
    title = {Statistical Computations at FreeStatistics.org, URL http://www.freestatistics.org/blog/date/2008/Nov/15/t1226786297jom1zoesj8oua7o.htm/},
    year = {2008},
}
@Manual{R,
    title = {R: A Language and Environment for Statistical Computing},
    author = {{R Development Core Team}},
    organization = {R Foundation for Statistical Computing},
    address = {Vienna, Austria},
    year = {2008},
    note = {{ISBN} 3-900051-07-0},
    url = {http://www.R-project.org},
}
 
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
 
Feedback Forum:

Post a new message
 
Original text written by user:
 
IsPrivate?
No (this computation is public)
 
User-defined keywords:
 
Dataseries X:
» Textbox « » Textfile « » CSV «
2.2 0 2.3 0 2.1 0 2.8 0 3.1 0 2.9 0 2.6 0 2.7 0 2.3 0 2.3 0 2.1 0 2.2 0 2.9 0 2.6 0 2.7 0 1.8 1 1.3 1 0.9 1 1.3 1 1.3 1 1.3 1 1.3 1 1.1 1 1.4 1 1.2 1 1.7 1 1.8 1 1.5 1 1 1 1.6 1 1.5 1 1.8 1 1.8 1 1.6 1 1.9 1 1.7 1 1.6 1 1.3 1 1.1 1 1.9 0 2.6 0 2.3 0 2.4 0 2.2 0 2 0 2.9 0 2.6 0 2.3 0 2.3 0 2.6 0 3.1 0 2.8 0 2.5 0 2.9 0 3.1 0 3.1 0 3.2 0 2.5 0 2.6 0 2.9 0
 
Output produced by software:

Enter (or paste) a matrix (table) containing all data (time) series. Every column represents a different variable and must be delimited by a space or Tab. Every row represents a period in time (or category) and must be delimited by hard returns. The easiest way to enter data is to copy and paste a block of spreadsheet cells. Please, do not use commas or spaces to seperate groups of digits!


Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time5 seconds
R Server'Herman Ole Andreas Wold' @ 193.190.124.10:1001


Multiple Linear Regression - Estimated Regression Equation
Consumptieprijsindex[t] = + 2.37191489361702 -1.09893617021277Dumivariabele[t] -0.00877068557919695M1[t] + 0.0465721040189127M2[t] + 0.101914893617021M3[t] + 0.09725768321513M4[t] + 0.0326004728132389M5[t] + 0.0479432624113475M6[t] + 0.103286052009456M7[t] + 0.138628841607565M8[t] + 0.0339716312056738M9[t] + 0.0293144208037825M10[t] -0.0353427895981086M11[t] + 0.00465721040189126t + e[t]


Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STAT
H0: parameter = 0
2-tail p-value1-tail p-value
(Intercept)2.371914893617020.19075112.434600
Dumivariabele-1.098936170212770.093299-11.778600
M1-0.008770685579196950.223545-0.03920.9688730.484437
M20.04657210401891270.2232040.20870.8356410.41782
M30.1019148936170210.2228950.45720.6496570.324828
M40.097257683215130.2226190.43690.6642420.332121
M50.03260047281323890.2223740.14660.8840870.442043
M60.04794326241134750.2221620.21580.8300950.415048
M70.1032860520094560.2219820.46530.6439190.32196
M80.1386288416075650.2218350.62490.5351130.267556
M90.03397163120567380.2217210.15320.8788960.439448
M100.02931442080378250.2216390.13230.8953540.447677
M11-0.03534278959810860.22159-0.15950.8739760.436988
t0.004657210401891260.0026931.72920.0904850.045242


Multiple Linear Regression - Regression Statistics
Multiple R0.876092023146262
R-squared0.76753723302051
Adjusted R-squared0.701841233656742
F-TEST (value)11.6831654964336
F-TEST (DF numerator)13
F-TEST (DF denominator)46
p-value1.46781253818062e-10
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation0.350338367781153
Sum Squared Residuals5.64590070921986


Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolation
Forecast
Residuals
Prediction Error
12.22.36780141843972-0.167801418439719
22.32.42780141843972-0.127801418439716
32.12.48780141843972-0.387801418439716
42.82.487801418439720.312198581560284
53.12.427801418439720.672198581560284
62.92.447801418439720.452198581560284
72.62.507801418439720.092198581560284
82.72.547801418439720.152198581560284
92.32.44780141843972-0.147801418439716
102.32.44780141843972-0.147801418439716
112.12.38780141843972-0.287801418439716
122.22.42780141843972-0.227801418439716
132.92.423687943262410.47631205673759
142.62.483687943262410.116312056737589
152.72.543687943262410.156312056737589
161.81.444751773049650.355248226950355
171.31.38475177304965-0.0847517730496454
180.91.40475177304965-0.504751773049646
191.31.46475177304965-0.164751773049645
201.31.50475177304965-0.204751773049645
211.31.40475177304965-0.104751773049645
221.31.40475177304965-0.104751773049645
231.11.34475177304965-0.244751773049645
241.41.384751773049650.0152482269503545
251.21.38063829787234-0.18063829787234
261.71.440638297872340.259361702127659
271.81.500638297872340.299361702127659
281.51.50063829787234-0.000638297872340376
2911.44063829787234-0.440638297872341
301.61.460638297872340.139361702127660
311.51.52063829787234-0.0206382978723406
321.81.560638297872340.239361702127659
331.81.460638297872340.339361702127659
341.61.460638297872340.139361702127660
351.91.400638297872340.499361702127659
361.71.440638297872340.259361702127660
371.61.436524822695030.163475177304965
381.31.49652482269504-0.196524822695036
391.11.55652482269504-0.456524822695036
401.92.6554609929078-0.755460992907802
412.62.59546099290780.00453900709219863
422.32.6154609929078-0.315460992907801
432.42.6754609929078-0.275460992907802
442.22.7154609929078-0.515460992907801
4522.6154609929078-0.615460992907801
462.92.61546099290780.284539007092199
472.62.55546099290780.0445390070921986
482.32.5954609929078-0.295460992907802
492.32.59134751773050-0.291347517730496
502.62.65134751773050-0.0513475177304965
513.12.711347517730500.388652482269503
522.82.711347517730500.0886524822695034
532.52.65134751773050-0.151347517730497
542.92.671347517730500.228652482269504
553.12.731347517730500.368652482269504
563.12.771347517730500.328652482269503
573.22.671347517730500.528652482269503
582.52.67134751773050-0.171347517730496
592.62.61134751773050-0.0113475177304964
602.92.651347517730500.248652482269503
 
Charts produced by software:
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2008/Nov/15/t1226786297jom1zoesj8oua7o/1sij01226786058.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2008/Nov/15/t1226786297jom1zoesj8oua7o/1sij01226786058.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2008/Nov/15/t1226786297jom1zoesj8oua7o/22kvr1226786058.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2008/Nov/15/t1226786297jom1zoesj8oua7o/22kvr1226786058.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2008/Nov/15/t1226786297jom1zoesj8oua7o/3mxou1226786058.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2008/Nov/15/t1226786297jom1zoesj8oua7o/3mxou1226786058.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2008/Nov/15/t1226786297jom1zoesj8oua7o/48ge21226786058.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2008/Nov/15/t1226786297jom1zoesj8oua7o/48ge21226786058.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2008/Nov/15/t1226786297jom1zoesj8oua7o/53qsg1226786058.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2008/Nov/15/t1226786297jom1zoesj8oua7o/53qsg1226786058.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2008/Nov/15/t1226786297jom1zoesj8oua7o/6uuvg1226786058.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2008/Nov/15/t1226786297jom1zoesj8oua7o/6uuvg1226786058.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2008/Nov/15/t1226786297jom1zoesj8oua7o/78ymu1226786058.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2008/Nov/15/t1226786297jom1zoesj8oua7o/78ymu1226786058.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2008/Nov/15/t1226786297jom1zoesj8oua7o/8hglt1226786058.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2008/Nov/15/t1226786297jom1zoesj8oua7o/8hglt1226786058.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2008/Nov/15/t1226786297jom1zoesj8oua7o/98ph41226786058.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2008/Nov/15/t1226786297jom1zoesj8oua7o/98ph41226786058.ps (open in new window)


 
Parameters (Session):
par1 = 1 ; par2 = Include Monthly Dummies ; par3 = Linear Trend ;
 
Parameters (R input):
par1 = 1 ; par2 = Include Monthly Dummies ; par3 = Linear Trend ;
 
R code (references can be found in the software module):
library(lattice)
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT<br />H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation<br />Forecast', 1, TRUE)
a<-table.element(a, 'Residuals<br />Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
 





Copyright

Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

Software written by Ed van Stee & Patrick Wessa


Disclaimer

Information provided on this web site is provided "AS IS" without warranty of any kind, either express or implied, including, without limitation, warranties of merchantability, fitness for a particular purpose, and noninfringement. We use reasonable efforts to include accurate and timely information and periodically update the information, and software without notice. However, we make no warranties or representations as to the accuracy or completeness of such information (or software), and we assume no liability or responsibility for errors or omissions in the content of this web site, or any software bugs in online applications. Your use of this web site is AT YOUR OWN RISK. Under no circumstances and under no legal theory shall we be liable to you or any other person for any direct, indirect, special, incidental, exemplary, or consequential damages arising from your access to, or use of, this web site.


Privacy Policy

We may request personal information to be submitted to our servers in order to be able to:

  • personalize online software applications according to your needs
  • enforce strict security rules with respect to the data that you upload (e.g. statistical data)
  • manage user sessions of online applications
  • alert you about important changes or upgrades in resources or applications

We NEVER allow other companies to directly offer registered users information about their products and services. Banner references and hyperlinks of third parties NEVER contain any personal data of the visitor.

We do NOT sell, nor transmit by any means, personal information, nor statistical data series uploaded by you to third parties.

We carefully protect your data from loss, misuse, alteration, and destruction. However, at any time, and under any circumstance you are solely responsible for managing your passwords, and keeping them secret.

We store a unique ANONYMOUS USER ID in the form of a small 'Cookie' on your computer. This allows us to track your progress when using this website which is necessary to create state-dependent features. The cookie is used for NO OTHER PURPOSE. At any time you may opt to disallow cookies from this website - this will not affect other features of this website.

We examine cookies that are used by third-parties (banner and online ads) very closely: abuse from third-parties automatically results in termination of the advertising contract without refund. We have very good reason to believe that the cookies that are produced by third parties (banner ads) do NOT cause any privacy or security risk.

FreeStatistics.org is safe. There is no need to download any software to use the applications and services contained in this website. Hence, your system's security is not compromised by their use, and your personal data - other than data you submit in the account application form, and the user-agent information that is transmitted by your browser - is never transmitted to our servers.

As a general rule, we do not log on-line behavior of individuals (other than normal logging of webserver 'hits'). However, in cases of abuse, hacking, unauthorized access, Denial of Service attacks, illegal copying, hotlinking, non-compliance with international webstandards (such as robots.txt), or any other harmful behavior, our system engineers are empowered to log, track, identify, publish, and ban misbehaving individuals - even if this leads to ban entire blocks of IP addresses, or disclosing user's identity.


FreeStatistics.org is powered by