R version 2.8.0 (2008-10-20) Copyright (C) 2008 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- array(list(3.4,1,3,1,3.1,1,2.5,0,2.2,0,2.3,0,2.1,0,2.8,0,3.1,1,2.9,0,2.6,0,2.7,0,2.3,0,2.3,0,2.1,0,2.2,0,2.9,0,2.6,0,2.7,0,1.8,0,1.3,0,0.9,0,1.3,0,1.3,0,1.3,0,1.3,0,1.1,0,1.4,0,1.2,0,1.7,0,1.8,0,1.5,0,1,0,1.6,0,1.5,0,1.8,0,1.8,0,1.6,0,1.9,0,1.7,0,1.6,0,1.3,0,1.1,0,1.9,0,2.6,0,2.3,0,2.4,0,2.2,0,2,0,2.9,0,2.6,0,2.3,0,2.3,0,2.6,0,3.1,1,2.8,0,2.5,0,2.9,0,3.1,1,3.1,1,3.2,1,2.5,0,2.6,0,2.9,0,2.6,0,2.4,0,1.7,0,2,0,2.2,0,1.9,0,1.6,0,1.6,0,1.2,0,1.2,0,1.5,0,1.6,0,1.7,0,1.8,0,1.8,0,1.8,0,1.3,0,1.3,0,1.4,0,1.1,0,1.5,0,2.2,0,2.9,0,3.1,1,3.5,1,3.6,1,4.4,1,4.2,1,5.2,1,5.8,1),dim=c(2,94),dimnames=list(c('Consumptieprijsindex','Dumivariabele'),1:94)) > y <- array(NA,dim=c(2,94),dimnames=list(c('Consumptieprijsindex','Dumivariabele'),1:94)) > for (i in 1:dim(x)[1]) + { + for (j in 1:dim(x)[2]) + { + y[i,j] <- as.numeric(x[i,j]) + } + } > par3 = 'Linear Trend' > par2 = 'Include Monthly Dummies' > par1 = '1' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: AUTHOR(S), (YEAR), YOUR SOFTWARE TITLE (vNUMBER) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_YOURPAGE.wasp/ > #Source of accompanying publication: Office for Research, Development, and Education > #Technical description: Write here your technical program description (don't use hard returns!) > library(lattice) > par1 <- as.numeric(par1) > x <- t(y) > k <- length(x[1,]) > n <- length(x[,1]) > x1 <- cbind(x[,par1], x[,1:k!=par1]) > mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1]) > colnames(x1) <- mycolnames #colnames(x)[par1] > x <- x1 > if (par3 == 'First Differences'){ + x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep=''))) + for (i in 1:n-1) { + for (j in 1:k) { + x2[i,j] <- x[i+1,j] - x[i,j] + } + } + x <- x2 + } > if (par2 == 'Include Monthly Dummies'){ + x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep =''))) + for (i in 1:11){ + x2[seq(i,n,12),i] <- 1 + } + x <- cbind(x, x2) + } > if (par2 == 'Include Quarterly Dummies'){ + x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep =''))) + for (i in 1:3){ + x2[seq(i,n,4),i] <- 1 + } + x <- cbind(x, x2) + } > k <- length(x[1,]) > if (par3 == 'Linear Trend'){ + x <- cbind(x, c(1:n)) + colnames(x)[k+1] <- 't' + } > x Consumptieprijsindex Dumivariabele M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 t 1 3.4 1 1 0 0 0 0 0 0 0 0 0 0 1 2 3.0 1 0 1 0 0 0 0 0 0 0 0 0 2 3 3.1 1 0 0 1 0 0 0 0 0 0 0 0 3 4 2.5 0 0 0 0 1 0 0 0 0 0 0 0 4 5 2.2 0 0 0 0 0 1 0 0 0 0 0 0 5 6 2.3 0 0 0 0 0 0 1 0 0 0 0 0 6 7 2.1 0 0 0 0 0 0 0 1 0 0 0 0 7 8 2.8 0 0 0 0 0 0 0 0 1 0 0 0 8 9 3.1 1 0 0 0 0 0 0 0 0 1 0 0 9 10 2.9 0 0 0 0 0 0 0 0 0 0 1 0 10 11 2.6 0 0 0 0 0 0 0 0 0 0 0 1 11 12 2.7 0 0 0 0 0 0 0 0 0 0 0 0 12 13 2.3 0 1 0 0 0 0 0 0 0 0 0 0 13 14 2.3 0 0 1 0 0 0 0 0 0 0 0 0 14 15 2.1 0 0 0 1 0 0 0 0 0 0 0 0 15 16 2.2 0 0 0 0 1 0 0 0 0 0 0 0 16 17 2.9 0 0 0 0 0 1 0 0 0 0 0 0 17 18 2.6 0 0 0 0 0 0 1 0 0 0 0 0 18 19 2.7 0 0 0 0 0 0 0 1 0 0 0 0 19 20 1.8 0 0 0 0 0 0 0 0 1 0 0 0 20 21 1.3 0 0 0 0 0 0 0 0 0 1 0 0 21 22 0.9 0 0 0 0 0 0 0 0 0 0 1 0 22 23 1.3 0 0 0 0 0 0 0 0 0 0 0 1 23 24 1.3 0 0 0 0 0 0 0 0 0 0 0 0 24 25 1.3 0 1 0 0 0 0 0 0 0 0 0 0 25 26 1.3 0 0 1 0 0 0 0 0 0 0 0 0 26 27 1.1 0 0 0 1 0 0 0 0 0 0 0 0 27 28 1.4 0 0 0 0 1 0 0 0 0 0 0 0 28 29 1.2 0 0 0 0 0 1 0 0 0 0 0 0 29 30 1.7 0 0 0 0 0 0 1 0 0 0 0 0 30 31 1.8 0 0 0 0 0 0 0 1 0 0 0 0 31 32 1.5 0 0 0 0 0 0 0 0 1 0 0 0 32 33 1.0 0 0 0 0 0 0 0 0 0 1 0 0 33 34 1.6 0 0 0 0 0 0 0 0 0 0 1 0 34 35 1.5 0 0 0 0 0 0 0 0 0 0 0 1 35 36 1.8 0 0 0 0 0 0 0 0 0 0 0 0 36 37 1.8 0 1 0 0 0 0 0 0 0 0 0 0 37 38 1.6 0 0 1 0 0 0 0 0 0 0 0 0 38 39 1.9 0 0 0 1 0 0 0 0 0 0 0 0 39 40 1.7 0 0 0 0 1 0 0 0 0 0 0 0 40 41 1.6 0 0 0 0 0 1 0 0 0 0 0 0 41 42 1.3 0 0 0 0 0 0 1 0 0 0 0 0 42 43 1.1 0 0 0 0 0 0 0 1 0 0 0 0 43 44 1.9 0 0 0 0 0 0 0 0 1 0 0 0 44 45 2.6 0 0 0 0 0 0 0 0 0 1 0 0 45 46 2.3 0 0 0 0 0 0 0 0 0 0 1 0 46 47 2.4 0 0 0 0 0 0 0 0 0 0 0 1 47 48 2.2 0 0 0 0 0 0 0 0 0 0 0 0 48 49 2.0 0 1 0 0 0 0 0 0 0 0 0 0 49 50 2.9 0 0 1 0 0 0 0 0 0 0 0 0 50 51 2.6 0 0 0 1 0 0 0 0 0 0 0 0 51 52 2.3 0 0 0 0 1 0 0 0 0 0 0 0 52 53 2.3 0 0 0 0 0 1 0 0 0 0 0 0 53 54 2.6 0 0 0 0 0 0 1 0 0 0 0 0 54 55 3.1 1 0 0 0 0 0 0 1 0 0 0 0 55 56 2.8 0 0 0 0 0 0 0 0 1 0 0 0 56 57 2.5 0 0 0 0 0 0 0 0 0 1 0 0 57 58 2.9 0 0 0 0 0 0 0 0 0 0 1 0 58 59 3.1 1 0 0 0 0 0 0 0 0 0 0 1 59 60 3.1 1 0 0 0 0 0 0 0 0 0 0 0 60 61 3.2 1 1 0 0 0 0 0 0 0 0 0 0 61 62 2.5 0 0 1 0 0 0 0 0 0 0 0 0 62 63 2.6 0 0 0 1 0 0 0 0 0 0 0 0 63 64 2.9 0 0 0 0 1 0 0 0 0 0 0 0 64 65 2.6 0 0 0 0 0 1 0 0 0 0 0 0 65 66 2.4 0 0 0 0 0 0 1 0 0 0 0 0 66 67 1.7 0 0 0 0 0 0 0 1 0 0 0 0 67 68 2.0 0 0 0 0 0 0 0 0 1 0 0 0 68 69 2.2 0 0 0 0 0 0 0 0 0 1 0 0 69 70 1.9 0 0 0 0 0 0 0 0 0 0 1 0 70 71 1.6 0 0 0 0 0 0 0 0 0 0 0 1 71 72 1.6 0 0 0 0 0 0 0 0 0 0 0 0 72 73 1.2 0 1 0 0 0 0 0 0 0 0 0 0 73 74 1.2 0 0 1 0 0 0 0 0 0 0 0 0 74 75 1.5 0 0 0 1 0 0 0 0 0 0 0 0 75 76 1.6 0 0 0 0 1 0 0 0 0 0 0 0 76 77 1.7 0 0 0 0 0 1 0 0 0 0 0 0 77 78 1.8 0 0 0 0 0 0 1 0 0 0 0 0 78 79 1.8 0 0 0 0 0 0 0 1 0 0 0 0 79 80 1.8 0 0 0 0 0 0 0 0 1 0 0 0 80 81 1.3 0 0 0 0 0 0 0 0 0 1 0 0 81 82 1.3 0 0 0 0 0 0 0 0 0 0 1 0 82 83 1.4 0 0 0 0 0 0 0 0 0 0 0 1 83 84 1.1 0 0 0 0 0 0 0 0 0 0 0 0 84 85 1.5 0 1 0 0 0 0 0 0 0 0 0 0 85 86 2.2 0 0 1 0 0 0 0 0 0 0 0 0 86 87 2.9 0 0 0 1 0 0 0 0 0 0 0 0 87 88 3.1 1 0 0 0 1 0 0 0 0 0 0 0 88 89 3.5 1 0 0 0 0 1 0 0 0 0 0 0 89 90 3.6 1 0 0 0 0 0 1 0 0 0 0 0 90 91 4.4 1 0 0 0 0 0 0 1 0 0 0 0 91 92 4.2 1 0 0 0 0 0 0 0 1 0 0 0 92 93 5.2 1 0 0 0 0 0 0 0 0 1 0 0 93 94 5.8 1 0 0 0 0 0 0 0 0 0 1 0 94 > k <- length(x[1,]) > df <- as.data.frame(x) > (mylm <- lm(df)) Call: lm(formula = df) Coefficients: (Intercept) Dumivariabele M1 M2 M3 1.668972 1.716920 -0.061928 0.188996 0.287805 M4 M5 M6 M7 M8 0.274113 0.310422 0.346731 0.180924 0.406848 M9 M10 M11 t 0.241042 0.504466 0.015477 0.001191 > (mysum <- summary(mylm)) Call: lm(formula = df) Residuals: Min 1Q Median 3Q Max -1.2996 -0.4241 -0.1558 0.5216 1.7977 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 1.668972 0.269648 6.189 2.43e-08 *** Dumivariabele 1.716920 0.186074 9.227 3.15e-14 *** M1 -0.061928 0.333148 -0.186 0.853 M2 0.188996 0.332322 0.569 0.571 M3 0.287805 0.332261 0.866 0.389 M4 0.274113 0.332219 0.825 0.412 M5 0.310422 0.332196 0.934 0.353 M6 0.346731 0.332191 1.044 0.300 M7 0.180924 0.332753 0.544 0.588 M8 0.406848 0.332238 1.225 0.224 M9 0.241042 0.332772 0.724 0.471 M10 0.504466 0.332360 1.518 0.133 M11 0.015477 0.343077 0.045 0.964 t 0.001191 0.002497 0.477 0.635 --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 0.6418 on 80 degrees of freedom Multiple R-squared: 0.5431, Adjusted R-squared: 0.4689 F-statistic: 7.316 on 13 and 80 DF, p-value: 3.322e-09 > postscript(file="/var/www/html/rcomp/tmp/1dse11227104306.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index') > points(x[,1]-mysum$resid) > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/21s871227104306.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index') > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/33m5z1227104306.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals') > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/46xx11227104306.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals') > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/57uq81227104306.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > qqnorm(mysum$resid, main='Residual Normal Q-Q Plot') > grid() > dev.off() null device 1 > (myerror <- as.ts(mysum$resid)) Time Series: Start = 1 End = 94 Frequency = 1 1 2 3 4 5 6 0.07484384 -0.57727122 -0.57727122 0.55214927 0.21464927 0.27714927 7 8 9 10 11 12 0.24176434 0.71464927 -0.53765616 0.71464927 0.90244654 1.01673225 13 14 15 16 17 18 0.67746885 0.42535378 0.12535378 0.23785378 0.90035378 0.56285378 19 20 21 22 23 24 0.82746885 -0.29964622 -0.63503115 -1.29964622 -0.41184895 -0.39756324 25 26 27 28 29 30 -0.33682664 -0.58894170 -0.88894170 -0.57644170 -0.81394170 -0.35144170 31 32 33 34 35 36 -0.08682664 -0.61394170 -0.94932664 -0.61394170 -0.22614444 0.08814127 37 38 39 40 41 42 0.14887787 -0.30323719 -0.10323719 -0.29073719 -0.42823719 -0.76573719 43 44 45 46 47 48 -0.80112213 -0.22823719 0.63637787 0.07176281 0.65956007 0.47384579 49 50 51 52 53 54 0.33458238 0.98246732 0.58246732 0.29496732 0.25746732 0.51996732 55 56 57 58 59 60 -0.53233812 0.65746732 0.52208238 0.65746732 -0.37165591 -0.35737020 61 62 63 64 65 66 -0.19663361 0.56817183 0.56817183 0.88067183 0.54317183 0.30567183 67 68 69 70 71 72 -0.22971311 -0.15682817 0.20778689 -0.35682817 -0.16903091 -0.15474519 73 74 75 76 77 78 -0.49400860 -0.74612366 -0.54612366 -0.43362366 -0.37112366 -0.30862366 79 80 81 82 83 84 -0.14400860 -0.37112366 -0.70650860 -0.97112366 -0.38332640 -0.66904068 85 86 87 88 89 90 -0.20830409 0.23958085 0.83958085 -0.66483965 -0.30233965 -0.23983965 91 92 93 94 0.72477542 0.29766035 1.46227542 1.79766035 > postscript(file="/var/www/html/rcomp/tmp/6snc11227104306.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > dum <- cbind(lag(myerror,k=1),myerror) > dum Time Series: Start = 0 End = 94 Frequency = 1 lag(myerror, k = 1) myerror 0 0.07484384 NA 1 -0.57727122 0.07484384 2 -0.57727122 -0.57727122 3 0.55214927 -0.57727122 4 0.21464927 0.55214927 5 0.27714927 0.21464927 6 0.24176434 0.27714927 7 0.71464927 0.24176434 8 -0.53765616 0.71464927 9 0.71464927 -0.53765616 10 0.90244654 0.71464927 11 1.01673225 0.90244654 12 0.67746885 1.01673225 13 0.42535378 0.67746885 14 0.12535378 0.42535378 15 0.23785378 0.12535378 16 0.90035378 0.23785378 17 0.56285378 0.90035378 18 0.82746885 0.56285378 19 -0.29964622 0.82746885 20 -0.63503115 -0.29964622 21 -1.29964622 -0.63503115 22 -0.41184895 -1.29964622 23 -0.39756324 -0.41184895 24 -0.33682664 -0.39756324 25 -0.58894170 -0.33682664 26 -0.88894170 -0.58894170 27 -0.57644170 -0.88894170 28 -0.81394170 -0.57644170 29 -0.35144170 -0.81394170 30 -0.08682664 -0.35144170 31 -0.61394170 -0.08682664 32 -0.94932664 -0.61394170 33 -0.61394170 -0.94932664 34 -0.22614444 -0.61394170 35 0.08814127 -0.22614444 36 0.14887787 0.08814127 37 -0.30323719 0.14887787 38 -0.10323719 -0.30323719 39 -0.29073719 -0.10323719 40 -0.42823719 -0.29073719 41 -0.76573719 -0.42823719 42 -0.80112213 -0.76573719 43 -0.22823719 -0.80112213 44 0.63637787 -0.22823719 45 0.07176281 0.63637787 46 0.65956007 0.07176281 47 0.47384579 0.65956007 48 0.33458238 0.47384579 49 0.98246732 0.33458238 50 0.58246732 0.98246732 51 0.29496732 0.58246732 52 0.25746732 0.29496732 53 0.51996732 0.25746732 54 -0.53233812 0.51996732 55 0.65746732 -0.53233812 56 0.52208238 0.65746732 57 0.65746732 0.52208238 58 -0.37165591 0.65746732 59 -0.35737020 -0.37165591 60 -0.19663361 -0.35737020 61 0.56817183 -0.19663361 62 0.56817183 0.56817183 63 0.88067183 0.56817183 64 0.54317183 0.88067183 65 0.30567183 0.54317183 66 -0.22971311 0.30567183 67 -0.15682817 -0.22971311 68 0.20778689 -0.15682817 69 -0.35682817 0.20778689 70 -0.16903091 -0.35682817 71 -0.15474519 -0.16903091 72 -0.49400860 -0.15474519 73 -0.74612366 -0.49400860 74 -0.54612366 -0.74612366 75 -0.43362366 -0.54612366 76 -0.37112366 -0.43362366 77 -0.30862366 -0.37112366 78 -0.14400860 -0.30862366 79 -0.37112366 -0.14400860 80 -0.70650860 -0.37112366 81 -0.97112366 -0.70650860 82 -0.38332640 -0.97112366 83 -0.66904068 -0.38332640 84 -0.20830409 -0.66904068 85 0.23958085 -0.20830409 86 0.83958085 0.23958085 87 -0.66483965 0.83958085 88 -0.30233965 -0.66483965 89 -0.23983965 -0.30233965 90 0.72477542 -0.23983965 91 0.29766035 0.72477542 92 1.46227542 0.29766035 93 1.79766035 1.46227542 94 NA 1.79766035 > dum1 <- dum[2:length(myerror),] > dum1 lag(myerror, k = 1) myerror [1,] -0.57727122 0.07484384 [2,] -0.57727122 -0.57727122 [3,] 0.55214927 -0.57727122 [4,] 0.21464927 0.55214927 [5,] 0.27714927 0.21464927 [6,] 0.24176434 0.27714927 [7,] 0.71464927 0.24176434 [8,] -0.53765616 0.71464927 [9,] 0.71464927 -0.53765616 [10,] 0.90244654 0.71464927 [11,] 1.01673225 0.90244654 [12,] 0.67746885 1.01673225 [13,] 0.42535378 0.67746885 [14,] 0.12535378 0.42535378 [15,] 0.23785378 0.12535378 [16,] 0.90035378 0.23785378 [17,] 0.56285378 0.90035378 [18,] 0.82746885 0.56285378 [19,] -0.29964622 0.82746885 [20,] -0.63503115 -0.29964622 [21,] -1.29964622 -0.63503115 [22,] -0.41184895 -1.29964622 [23,] -0.39756324 -0.41184895 [24,] -0.33682664 -0.39756324 [25,] -0.58894170 -0.33682664 [26,] -0.88894170 -0.58894170 [27,] -0.57644170 -0.88894170 [28,] -0.81394170 -0.57644170 [29,] -0.35144170 -0.81394170 [30,] -0.08682664 -0.35144170 [31,] -0.61394170 -0.08682664 [32,] -0.94932664 -0.61394170 [33,] -0.61394170 -0.94932664 [34,] -0.22614444 -0.61394170 [35,] 0.08814127 -0.22614444 [36,] 0.14887787 0.08814127 [37,] -0.30323719 0.14887787 [38,] -0.10323719 -0.30323719 [39,] -0.29073719 -0.10323719 [40,] -0.42823719 -0.29073719 [41,] -0.76573719 -0.42823719 [42,] -0.80112213 -0.76573719 [43,] -0.22823719 -0.80112213 [44,] 0.63637787 -0.22823719 [45,] 0.07176281 0.63637787 [46,] 0.65956007 0.07176281 [47,] 0.47384579 0.65956007 [48,] 0.33458238 0.47384579 [49,] 0.98246732 0.33458238 [50,] 0.58246732 0.98246732 [51,] 0.29496732 0.58246732 [52,] 0.25746732 0.29496732 [53,] 0.51996732 0.25746732 [54,] -0.53233812 0.51996732 [55,] 0.65746732 -0.53233812 [56,] 0.52208238 0.65746732 [57,] 0.65746732 0.52208238 [58,] -0.37165591 0.65746732 [59,] -0.35737020 -0.37165591 [60,] -0.19663361 -0.35737020 [61,] 0.56817183 -0.19663361 [62,] 0.56817183 0.56817183 [63,] 0.88067183 0.56817183 [64,] 0.54317183 0.88067183 [65,] 0.30567183 0.54317183 [66,] -0.22971311 0.30567183 [67,] -0.15682817 -0.22971311 [68,] 0.20778689 -0.15682817 [69,] -0.35682817 0.20778689 [70,] -0.16903091 -0.35682817 [71,] -0.15474519 -0.16903091 [72,] -0.49400860 -0.15474519 [73,] -0.74612366 -0.49400860 [74,] -0.54612366 -0.74612366 [75,] -0.43362366 -0.54612366 [76,] -0.37112366 -0.43362366 [77,] -0.30862366 -0.37112366 [78,] -0.14400860 -0.30862366 [79,] -0.37112366 -0.14400860 [80,] -0.70650860 -0.37112366 [81,] -0.97112366 -0.70650860 [82,] -0.38332640 -0.97112366 [83,] -0.66904068 -0.38332640 [84,] -0.20830409 -0.66904068 [85,] 0.23958085 -0.20830409 [86,] 0.83958085 0.23958085 [87,] -0.66483965 0.83958085 [88,] -0.30233965 -0.66483965 [89,] -0.23983965 -0.30233965 [90,] 0.72477542 -0.23983965 [91,] 0.29766035 0.72477542 [92,] 1.46227542 0.29766035 [93,] 1.79766035 1.46227542 > z <- as.data.frame(dum1) > z lag(myerror, k = 1) myerror 1 -0.57727122 0.07484384 2 -0.57727122 -0.57727122 3 0.55214927 -0.57727122 4 0.21464927 0.55214927 5 0.27714927 0.21464927 6 0.24176434 0.27714927 7 0.71464927 0.24176434 8 -0.53765616 0.71464927 9 0.71464927 -0.53765616 10 0.90244654 0.71464927 11 1.01673225 0.90244654 12 0.67746885 1.01673225 13 0.42535378 0.67746885 14 0.12535378 0.42535378 15 0.23785378 0.12535378 16 0.90035378 0.23785378 17 0.56285378 0.90035378 18 0.82746885 0.56285378 19 -0.29964622 0.82746885 20 -0.63503115 -0.29964622 21 -1.29964622 -0.63503115 22 -0.41184895 -1.29964622 23 -0.39756324 -0.41184895 24 -0.33682664 -0.39756324 25 -0.58894170 -0.33682664 26 -0.88894170 -0.58894170 27 -0.57644170 -0.88894170 28 -0.81394170 -0.57644170 29 -0.35144170 -0.81394170 30 -0.08682664 -0.35144170 31 -0.61394170 -0.08682664 32 -0.94932664 -0.61394170 33 -0.61394170 -0.94932664 34 -0.22614444 -0.61394170 35 0.08814127 -0.22614444 36 0.14887787 0.08814127 37 -0.30323719 0.14887787 38 -0.10323719 -0.30323719 39 -0.29073719 -0.10323719 40 -0.42823719 -0.29073719 41 -0.76573719 -0.42823719 42 -0.80112213 -0.76573719 43 -0.22823719 -0.80112213 44 0.63637787 -0.22823719 45 0.07176281 0.63637787 46 0.65956007 0.07176281 47 0.47384579 0.65956007 48 0.33458238 0.47384579 49 0.98246732 0.33458238 50 0.58246732 0.98246732 51 0.29496732 0.58246732 52 0.25746732 0.29496732 53 0.51996732 0.25746732 54 -0.53233812 0.51996732 55 0.65746732 -0.53233812 56 0.52208238 0.65746732 57 0.65746732 0.52208238 58 -0.37165591 0.65746732 59 -0.35737020 -0.37165591 60 -0.19663361 -0.35737020 61 0.56817183 -0.19663361 62 0.56817183 0.56817183 63 0.88067183 0.56817183 64 0.54317183 0.88067183 65 0.30567183 0.54317183 66 -0.22971311 0.30567183 67 -0.15682817 -0.22971311 68 0.20778689 -0.15682817 69 -0.35682817 0.20778689 70 -0.16903091 -0.35682817 71 -0.15474519 -0.16903091 72 -0.49400860 -0.15474519 73 -0.74612366 -0.49400860 74 -0.54612366 -0.74612366 75 -0.43362366 -0.54612366 76 -0.37112366 -0.43362366 77 -0.30862366 -0.37112366 78 -0.14400860 -0.30862366 79 -0.37112366 -0.14400860 80 -0.70650860 -0.37112366 81 -0.97112366 -0.70650860 82 -0.38332640 -0.97112366 83 -0.66904068 -0.38332640 84 -0.20830409 -0.66904068 85 0.23958085 -0.20830409 86 0.83958085 0.23958085 87 -0.66483965 0.83958085 88 -0.30233965 -0.66483965 89 -0.23983965 -0.30233965 90 0.72477542 -0.23983965 91 0.29766035 0.72477542 92 1.46227542 0.29766035 93 1.79766035 1.46227542 > plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals') > lines(lowess(z)) > abline(lm(z)) > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/709zy1227104306.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function') > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/8e11s1227104306.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function') > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/9ba1z1227104306.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0)) > plot(mylm, las = 1, sub='Residual Diagnostics') > par(opar) > dev.off() null device 1 > > #Note: the /var/www/html/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/www/html/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE) > a<-table.row.end(a) > myeq <- colnames(x)[1] > myeq <- paste(myeq, '[t] = ', sep='') > for (i in 1:k){ + if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '') + myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ') + if (rownames(mysum$coefficients)[i] != '(Intercept)') { + myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='') + if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='') + } + } > myeq <- paste(myeq, ' + e[t]') > a<-table.row.start(a) > a<-table.element(a, myeq) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/10sig91227104306.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Variable',header=TRUE) > a<-table.element(a,'Parameter',header=TRUE) > a<-table.element(a,'S.D.',header=TRUE) > a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE) > a<-table.element(a,'2-tail p-value',header=TRUE) > a<-table.element(a,'1-tail p-value',header=TRUE) > a<-table.row.end(a) > for (i in 1:k){ + a<-table.row.start(a) + a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE) + a<-table.element(a,mysum$coefficients[i,1]) + a<-table.element(a, round(mysum$coefficients[i,2],6)) + a<-table.element(a, round(mysum$coefficients[i,3],4)) + a<-table.element(a, round(mysum$coefficients[i,4],6)) + a<-table.element(a, round(mysum$coefficients[i,4]/2,6)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/11viz11227104307.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Multiple R',1,TRUE) > a<-table.element(a, sqrt(mysum$r.squared)) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'R-squared',1,TRUE) > a<-table.element(a, mysum$r.squared) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Adjusted R-squared',1,TRUE) > a<-table.element(a, mysum$adj.r.squared) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (value)',1,TRUE) > a<-table.element(a, mysum$fstatistic[1]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE) > a<-table.element(a, mysum$fstatistic[2]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE) > a<-table.element(a, mysum$fstatistic[3]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'p-value',1,TRUE) > a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3])) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Residual Standard Deviation',1,TRUE) > a<-table.element(a, mysum$sigma) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Sum Squared Residuals',1,TRUE) > a<-table.element(a, sum(myerror*myerror)) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/127eaz1227104307.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Time or Index', 1, TRUE) > a<-table.element(a, 'Actuals', 1, TRUE) > a<-table.element(a, 'Interpolation
Forecast', 1, TRUE) > a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE) > a<-table.row.end(a) > for (i in 1:n) { + a<-table.row.start(a) + a<-table.element(a,i, 1, TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,x[i]-mysum$resid[i]) + a<-table.element(a,mysum$resid[i]) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/13xdt61227104307.tab") > > system("convert tmp/1dse11227104306.ps tmp/1dse11227104306.png") > system("convert tmp/21s871227104306.ps tmp/21s871227104306.png") > system("convert tmp/33m5z1227104306.ps tmp/33m5z1227104306.png") > system("convert tmp/46xx11227104306.ps tmp/46xx11227104306.png") > system("convert tmp/57uq81227104306.ps tmp/57uq81227104306.png") > system("convert tmp/6snc11227104306.ps tmp/6snc11227104306.png") > system("convert tmp/709zy1227104306.ps tmp/709zy1227104306.png") > system("convert tmp/8e11s1227104306.ps tmp/8e11s1227104306.png") > system("convert tmp/9ba1z1227104306.ps tmp/9ba1z1227104306.png") > > > proc.time() user system elapsed 2.056 1.469 3.022