R version 2.8.0 (2008-10-20) Copyright (C) 2008 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- array(list(10413,0,10709,0,10662,0,10570,0,10297,0,10635,0,10872,0,10296,0,10383,0,10431,0,10574,0,10653,0,10805,0,10872,0,10625,0,10407,0,10463,0,10556,0,10646,0,10702,0,11353,1,11346,1,11451,1,11964,1,12574,1,13031,1,13812,1,14544,1,14931,1,14886,1,16005,1,17064,1,15168,1,16050,1,15839,1,15137,1,14954,1,15648,1,15305,1,15579,1,16348,1,15928,1,16171,1,15937,1,15713,1,15594,1,15683,1,16438,1,17032,1,17696,1,17745,1,19394,1,20148,1,20108,1,18584,1,18441,1,18391,1,19178,1,18079,1,18483,1,19644,1),dim=c(2,61),dimnames=list(c('Goudkoers','DrasticChange'),1:61)) > y <- array(NA,dim=c(2,61),dimnames=list(c('Goudkoers','DrasticChange'),1:61)) > for (i in 1:dim(x)[1]) + { + for (j in 1:dim(x)[2]) + { + y[i,j] <- as.numeric(x[i,j]) + } + } > par3 = 'Linear Trend' > par2 = 'Include Monthly Dummies' > par1 = '1' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: AUTHOR(S), (YEAR), YOUR SOFTWARE TITLE (vNUMBER) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_YOURPAGE.wasp/ > #Source of accompanying publication: Office for Research, Development, and Education > #Technical description: Write here your technical program description (don't use hard returns!) > library(lattice) > par1 <- as.numeric(par1) > x <- t(y) > k <- length(x[1,]) > n <- length(x[,1]) > x1 <- cbind(x[,par1], x[,1:k!=par1]) > mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1]) > colnames(x1) <- mycolnames #colnames(x)[par1] > x <- x1 > if (par3 == 'First Differences'){ + x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep=''))) + for (i in 1:n-1) { + for (j in 1:k) { + x2[i,j] <- x[i+1,j] - x[i,j] + } + } + x <- x2 + } > if (par2 == 'Include Monthly Dummies'){ + x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep =''))) + for (i in 1:11){ + x2[seq(i,n,12),i] <- 1 + } + x <- cbind(x, x2) + } > if (par2 == 'Include Quarterly Dummies'){ + x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep =''))) + for (i in 1:3){ + x2[seq(i,n,4),i] <- 1 + } + x <- cbind(x, x2) + } > k <- length(x[1,]) > if (par3 == 'Linear Trend'){ + x <- cbind(x, c(1:n)) + colnames(x)[k+1] <- 't' + } > x Goudkoers DrasticChange M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 t 1 10413 0 1 0 0 0 0 0 0 0 0 0 0 1 2 10709 0 0 1 0 0 0 0 0 0 0 0 0 2 3 10662 0 0 0 1 0 0 0 0 0 0 0 0 3 4 10570 0 0 0 0 1 0 0 0 0 0 0 0 4 5 10297 0 0 0 0 0 1 0 0 0 0 0 0 5 6 10635 0 0 0 0 0 0 1 0 0 0 0 0 6 7 10872 0 0 0 0 0 0 0 1 0 0 0 0 7 8 10296 0 0 0 0 0 0 0 0 1 0 0 0 8 9 10383 0 0 0 0 0 0 0 0 0 1 0 0 9 10 10431 0 0 0 0 0 0 0 0 0 0 1 0 10 11 10574 0 0 0 0 0 0 0 0 0 0 0 1 11 12 10653 0 0 0 0 0 0 0 0 0 0 0 0 12 13 10805 0 1 0 0 0 0 0 0 0 0 0 0 13 14 10872 0 0 1 0 0 0 0 0 0 0 0 0 14 15 10625 0 0 0 1 0 0 0 0 0 0 0 0 15 16 10407 0 0 0 0 1 0 0 0 0 0 0 0 16 17 10463 0 0 0 0 0 1 0 0 0 0 0 0 17 18 10556 0 0 0 0 0 0 1 0 0 0 0 0 18 19 10646 0 0 0 0 0 0 0 1 0 0 0 0 19 20 10702 0 0 0 0 0 0 0 0 1 0 0 0 20 21 11353 1 0 0 0 0 0 0 0 0 1 0 0 21 22 11346 1 0 0 0 0 0 0 0 0 0 1 0 22 23 11451 1 0 0 0 0 0 0 0 0 0 0 1 23 24 11964 1 0 0 0 0 0 0 0 0 0 0 0 24 25 12574 1 1 0 0 0 0 0 0 0 0 0 0 25 26 13031 1 0 1 0 0 0 0 0 0 0 0 0 26 27 13812 1 0 0 1 0 0 0 0 0 0 0 0 27 28 14544 1 0 0 0 1 0 0 0 0 0 0 0 28 29 14931 1 0 0 0 0 1 0 0 0 0 0 0 29 30 14886 1 0 0 0 0 0 1 0 0 0 0 0 30 31 16005 1 0 0 0 0 0 0 1 0 0 0 0 31 32 17064 1 0 0 0 0 0 0 0 1 0 0 0 32 33 15168 1 0 0 0 0 0 0 0 0 1 0 0 33 34 16050 1 0 0 0 0 0 0 0 0 0 1 0 34 35 15839 1 0 0 0 0 0 0 0 0 0 0 1 35 36 15137 1 0 0 0 0 0 0 0 0 0 0 0 36 37 14954 1 1 0 0 0 0 0 0 0 0 0 0 37 38 15648 1 0 1 0 0 0 0 0 0 0 0 0 38 39 15305 1 0 0 1 0 0 0 0 0 0 0 0 39 40 15579 1 0 0 0 1 0 0 0 0 0 0 0 40 41 16348 1 0 0 0 0 1 0 0 0 0 0 0 41 42 15928 1 0 0 0 0 0 1 0 0 0 0 0 42 43 16171 1 0 0 0 0 0 0 1 0 0 0 0 43 44 15937 1 0 0 0 0 0 0 0 1 0 0 0 44 45 15713 1 0 0 0 0 0 0 0 0 1 0 0 45 46 15594 1 0 0 0 0 0 0 0 0 0 1 0 46 47 15683 1 0 0 0 0 0 0 0 0 0 0 1 47 48 16438 1 0 0 0 0 0 0 0 0 0 0 0 48 49 17032 1 1 0 0 0 0 0 0 0 0 0 0 49 50 17696 1 0 1 0 0 0 0 0 0 0 0 0 50 51 17745 1 0 0 1 0 0 0 0 0 0 0 0 51 52 19394 1 0 0 0 1 0 0 0 0 0 0 0 52 53 20148 1 0 0 0 0 1 0 0 0 0 0 0 53 54 20108 1 0 0 0 0 0 1 0 0 0 0 0 54 55 18584 1 0 0 0 0 0 0 1 0 0 0 0 55 56 18441 1 0 0 0 0 0 0 0 1 0 0 0 56 57 18391 1 0 0 0 0 0 0 0 0 1 0 0 57 58 19178 1 0 0 0 0 0 0 0 0 0 1 0 58 59 18079 1 0 0 0 0 0 0 0 0 0 0 1 59 60 18483 1 0 0 0 0 0 0 0 0 0 0 0 60 61 19644 1 1 0 0 0 0 0 0 0 0 0 0 61 > k <- length(x[1,]) > df <- as.data.frame(x) > (mylm <- lm(df)) Call: lm(formula = df) Coefficients: (Intercept) DrasticChange M1 M2 M3 8213.36 772.59 597.17 795.04 675.21 M4 M5 M6 M7 M8 985.78 1165.94 992.71 867.28 741.25 M9 M10 M11 t 141.90 301.66 -51.37 158.43 > (mysum <- summary(mylm)) Call: lm(formula = df) Residuals: Min 1Q Median 3Q Max -1609.656 -697.906 -8.894 601.850 2266.963 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 8213.36 532.59 15.422 < 2e-16 *** DrasticChange 772.59 488.43 1.582 0.1204 M1 597.17 621.11 0.961 0.3412 M2 795.04 651.83 1.220 0.2287 M3 675.21 650.96 1.037 0.3049 M4 985.78 650.35 1.516 0.1363 M5 1165.94 649.99 1.794 0.0793 . M6 992.71 649.89 1.528 0.1333 M7 867.28 650.05 1.334 0.1886 M8 741.25 650.47 1.140 0.2602 M9 141.90 648.56 0.219 0.8278 M10 301.66 647.91 0.466 0.6437 M11 -51.37 647.52 -0.079 0.9371 t 158.43 12.96 12.222 3.37e-16 *** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 1024 on 47 degrees of freedom Multiple R-squared: 0.9206, Adjusted R-squared: 0.8987 F-statistic: 41.95 on 13 and 47 DF, p-value: < 2.2e-16 > postscript(file="/var/www/html/freestat/rcomp/tmp/1z9wo1227121379.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index') > points(x[,1]-mysum$resid) > grid() > dev.off() null device 1 > postscript(file="/var/www/html/freestat/rcomp/tmp/23jp61227121379.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index') > grid() > dev.off() null device 1 > postscript(file="/var/www/html/freestat/rcomp/tmp/332ge1227121379.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals') > grid() > dev.off() null device 1 > postscript(file="/var/www/html/freestat/rcomp/tmp/4xalr1227121379.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals') > dev.off() null device 1 > postscript(file="/var/www/html/freestat/rcomp/tmp/5r1le1227121379.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > qqnorm(mysum$resid, main='Residual Normal Q-Q Plot') > grid() > dev.off() null device 1 > (myerror <- as.ts(mysum$resid)) Time Series: Start = 1 End = 61 Frequency = 1 1 2 3 4 5 6 1444.03125 1383.73125 1298.13125 737.13125 125.53125 478.33125 7 8 9 10 11 12 682.33125 73.93125 601.85000 331.65000 669.25000 538.45000 13 14 15 16 17 18 -65.15625 -354.45625 -640.05625 -1327.05625 -1609.65625 -1501.85625 19 20 21 22 23 24 -1444.85625 -1421.25625 -1101.93125 -1427.13125 -1127.53125 -824.33125 25 26 27 28 29 30 -969.93750 -869.23750 -126.83750 136.16250 184.56250 154.36250 31 32 33 34 35 36 1240.36250 2266.96250 811.88125 1375.68125 1359.28125 447.48125 37 38 39 40 41 42 -491.12500 -153.42500 -535.02500 -730.02500 -299.62500 -704.82500 43 44 45 46 47 48 -494.82500 -761.22500 -544.30625 -981.50625 -697.90625 -152.70625 49 50 51 52 53 54 -314.31250 -6.61250 3.78750 1183.78750 1599.18750 1573.98750 55 56 57 58 59 60 16.98750 -158.41250 232.50625 701.30625 -203.09375 -8.89375 61 396.50000 > postscript(file="/var/www/html/freestat/rcomp/tmp/6ewqc1227121379.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > dum <- cbind(lag(myerror,k=1),myerror) > dum Time Series: Start = 0 End = 61 Frequency = 1 lag(myerror, k = 1) myerror 0 1444.03125 NA 1 1383.73125 1444.03125 2 1298.13125 1383.73125 3 737.13125 1298.13125 4 125.53125 737.13125 5 478.33125 125.53125 6 682.33125 478.33125 7 73.93125 682.33125 8 601.85000 73.93125 9 331.65000 601.85000 10 669.25000 331.65000 11 538.45000 669.25000 12 -65.15625 538.45000 13 -354.45625 -65.15625 14 -640.05625 -354.45625 15 -1327.05625 -640.05625 16 -1609.65625 -1327.05625 17 -1501.85625 -1609.65625 18 -1444.85625 -1501.85625 19 -1421.25625 -1444.85625 20 -1101.93125 -1421.25625 21 -1427.13125 -1101.93125 22 -1127.53125 -1427.13125 23 -824.33125 -1127.53125 24 -969.93750 -824.33125 25 -869.23750 -969.93750 26 -126.83750 -869.23750 27 136.16250 -126.83750 28 184.56250 136.16250 29 154.36250 184.56250 30 1240.36250 154.36250 31 2266.96250 1240.36250 32 811.88125 2266.96250 33 1375.68125 811.88125 34 1359.28125 1375.68125 35 447.48125 1359.28125 36 -491.12500 447.48125 37 -153.42500 -491.12500 38 -535.02500 -153.42500 39 -730.02500 -535.02500 40 -299.62500 -730.02500 41 -704.82500 -299.62500 42 -494.82500 -704.82500 43 -761.22500 -494.82500 44 -544.30625 -761.22500 45 -981.50625 -544.30625 46 -697.90625 -981.50625 47 -152.70625 -697.90625 48 -314.31250 -152.70625 49 -6.61250 -314.31250 50 3.78750 -6.61250 51 1183.78750 3.78750 52 1599.18750 1183.78750 53 1573.98750 1599.18750 54 16.98750 1573.98750 55 -158.41250 16.98750 56 232.50625 -158.41250 57 701.30625 232.50625 58 -203.09375 701.30625 59 -8.89375 -203.09375 60 396.50000 -8.89375 61 NA 396.50000 > dum1 <- dum[2:length(myerror),] > dum1 lag(myerror, k = 1) myerror [1,] 1383.73125 1444.03125 [2,] 1298.13125 1383.73125 [3,] 737.13125 1298.13125 [4,] 125.53125 737.13125 [5,] 478.33125 125.53125 [6,] 682.33125 478.33125 [7,] 73.93125 682.33125 [8,] 601.85000 73.93125 [9,] 331.65000 601.85000 [10,] 669.25000 331.65000 [11,] 538.45000 669.25000 [12,] -65.15625 538.45000 [13,] -354.45625 -65.15625 [14,] -640.05625 -354.45625 [15,] -1327.05625 -640.05625 [16,] -1609.65625 -1327.05625 [17,] -1501.85625 -1609.65625 [18,] -1444.85625 -1501.85625 [19,] -1421.25625 -1444.85625 [20,] -1101.93125 -1421.25625 [21,] -1427.13125 -1101.93125 [22,] -1127.53125 -1427.13125 [23,] -824.33125 -1127.53125 [24,] -969.93750 -824.33125 [25,] -869.23750 -969.93750 [26,] -126.83750 -869.23750 [27,] 136.16250 -126.83750 [28,] 184.56250 136.16250 [29,] 154.36250 184.56250 [30,] 1240.36250 154.36250 [31,] 2266.96250 1240.36250 [32,] 811.88125 2266.96250 [33,] 1375.68125 811.88125 [34,] 1359.28125 1375.68125 [35,] 447.48125 1359.28125 [36,] -491.12500 447.48125 [37,] -153.42500 -491.12500 [38,] -535.02500 -153.42500 [39,] -730.02500 -535.02500 [40,] -299.62500 -730.02500 [41,] -704.82500 -299.62500 [42,] -494.82500 -704.82500 [43,] -761.22500 -494.82500 [44,] -544.30625 -761.22500 [45,] -981.50625 -544.30625 [46,] -697.90625 -981.50625 [47,] -152.70625 -697.90625 [48,] -314.31250 -152.70625 [49,] -6.61250 -314.31250 [50,] 3.78750 -6.61250 [51,] 1183.78750 3.78750 [52,] 1599.18750 1183.78750 [53,] 1573.98750 1599.18750 [54,] 16.98750 1573.98750 [55,] -158.41250 16.98750 [56,] 232.50625 -158.41250 [57,] 701.30625 232.50625 [58,] -203.09375 701.30625 [59,] -8.89375 -203.09375 [60,] 396.50000 -8.89375 > z <- as.data.frame(dum1) > z lag(myerror, k = 1) myerror 1 1383.73125 1444.03125 2 1298.13125 1383.73125 3 737.13125 1298.13125 4 125.53125 737.13125 5 478.33125 125.53125 6 682.33125 478.33125 7 73.93125 682.33125 8 601.85000 73.93125 9 331.65000 601.85000 10 669.25000 331.65000 11 538.45000 669.25000 12 -65.15625 538.45000 13 -354.45625 -65.15625 14 -640.05625 -354.45625 15 -1327.05625 -640.05625 16 -1609.65625 -1327.05625 17 -1501.85625 -1609.65625 18 -1444.85625 -1501.85625 19 -1421.25625 -1444.85625 20 -1101.93125 -1421.25625 21 -1427.13125 -1101.93125 22 -1127.53125 -1427.13125 23 -824.33125 -1127.53125 24 -969.93750 -824.33125 25 -869.23750 -969.93750 26 -126.83750 -869.23750 27 136.16250 -126.83750 28 184.56250 136.16250 29 154.36250 184.56250 30 1240.36250 154.36250 31 2266.96250 1240.36250 32 811.88125 2266.96250 33 1375.68125 811.88125 34 1359.28125 1375.68125 35 447.48125 1359.28125 36 -491.12500 447.48125 37 -153.42500 -491.12500 38 -535.02500 -153.42500 39 -730.02500 -535.02500 40 -299.62500 -730.02500 41 -704.82500 -299.62500 42 -494.82500 -704.82500 43 -761.22500 -494.82500 44 -544.30625 -761.22500 45 -981.50625 -544.30625 46 -697.90625 -981.50625 47 -152.70625 -697.90625 48 -314.31250 -152.70625 49 -6.61250 -314.31250 50 3.78750 -6.61250 51 1183.78750 3.78750 52 1599.18750 1183.78750 53 1573.98750 1599.18750 54 16.98750 1573.98750 55 -158.41250 16.98750 56 232.50625 -158.41250 57 701.30625 232.50625 58 -203.09375 701.30625 59 -8.89375 -203.09375 60 396.50000 -8.89375 > plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals') > lines(lowess(z)) > abline(lm(z)) > grid() > dev.off() null device 1 > postscript(file="/var/www/html/freestat/rcomp/tmp/7er1j1227121379.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function') > grid() > dev.off() null device 1 > postscript(file="/var/www/html/freestat/rcomp/tmp/8i4891227121379.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function') > grid() > dev.off() null device 1 > postscript(file="/var/www/html/freestat/rcomp/tmp/9yn2a1227121379.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0)) > plot(mylm, las = 1, sub='Residual Diagnostics') > par(opar) > dev.off() null device 1 > > #Note: the /var/www/html/freestat/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/www/html/freestat/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE) > a<-table.row.end(a) > myeq <- colnames(x)[1] > myeq <- paste(myeq, '[t] = ', sep='') > for (i in 1:k){ + if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '') + myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ') + if (rownames(mysum$coefficients)[i] != '(Intercept)') { + myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='') + if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='') + } + } > myeq <- paste(myeq, ' + e[t]') > a<-table.row.start(a) > a<-table.element(a, myeq) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/www/html/freestat/rcomp/tmp/10wnfx1227121379.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Variable',header=TRUE) > a<-table.element(a,'Parameter',header=TRUE) > a<-table.element(a,'S.D.',header=TRUE) > a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE) > a<-table.element(a,'2-tail p-value',header=TRUE) > a<-table.element(a,'1-tail p-value',header=TRUE) > a<-table.row.end(a) > for (i in 1:k){ + a<-table.row.start(a) + a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE) + a<-table.element(a,mysum$coefficients[i,1]) + a<-table.element(a, round(mysum$coefficients[i,2],6)) + a<-table.element(a, round(mysum$coefficients[i,3],4)) + a<-table.element(a, round(mysum$coefficients[i,4],6)) + a<-table.element(a, round(mysum$coefficients[i,4]/2,6)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/freestat/rcomp/tmp/11otz71227121379.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Multiple R',1,TRUE) > a<-table.element(a, sqrt(mysum$r.squared)) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'R-squared',1,TRUE) > a<-table.element(a, mysum$r.squared) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Adjusted R-squared',1,TRUE) > a<-table.element(a, mysum$adj.r.squared) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (value)',1,TRUE) > a<-table.element(a, mysum$fstatistic[1]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE) > a<-table.element(a, mysum$fstatistic[2]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE) > a<-table.element(a, mysum$fstatistic[3]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'p-value',1,TRUE) > a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3])) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Residual Standard Deviation',1,TRUE) > a<-table.element(a, mysum$sigma) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Sum Squared Residuals',1,TRUE) > a<-table.element(a, sum(myerror*myerror)) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/www/html/freestat/rcomp/tmp/12zzfo1227121379.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Time or Index', 1, TRUE) > a<-table.element(a, 'Actuals', 1, TRUE) > a<-table.element(a, 'Interpolation
Forecast', 1, TRUE) > a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE) > a<-table.row.end(a) > for (i in 1:n) { + a<-table.row.start(a) + a<-table.element(a,i, 1, TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,x[i]-mysum$resid[i]) + a<-table.element(a,mysum$resid[i]) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/freestat/rcomp/tmp/13eate1227121379.tab") > > system("convert tmp/1z9wo1227121379.ps tmp/1z9wo1227121379.png") > system("convert tmp/23jp61227121379.ps tmp/23jp61227121379.png") > system("convert tmp/332ge1227121379.ps tmp/332ge1227121379.png") > system("convert tmp/4xalr1227121379.ps tmp/4xalr1227121379.png") > system("convert tmp/5r1le1227121379.ps tmp/5r1le1227121379.png") > system("convert tmp/6ewqc1227121379.ps tmp/6ewqc1227121379.png") > system("convert tmp/7er1j1227121379.ps tmp/7er1j1227121379.png") > system("convert tmp/8i4891227121379.ps tmp/8i4891227121379.png") > system("convert tmp/9yn2a1227121379.ps tmp/9yn2a1227121379.png") > > > proc.time() user system elapsed 2.940 2.203 3.351