R version 2.8.0 (2008-10-20)
Copyright (C) 2008 The R Foundation for Statistical Computing
ISBN 3-900051-07-0
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> x <- array(list(9097,0,12639,0,13040,0,11687,0,11191,0,11391,0,11793,0,13933,0,12778,0,11810,0,13698,0,11956,0,10723,0,13938,0,13979,0,13807,0,12973,0,12509,0,12934,0,14908,0,13772,0,13012,0,14049,0,11816,0,11593,0,14466,0,13615,0,14733,0,13880,0,13527,0,13584,0,16170,0,13260,0,14741,0,15486,0,13154,0,12621,0,15031,0,15452,0,15428,0,13105,0,14716,0,14180,0,16202,0,14392,0,15140,0,15960,0,14351,0,13230,0,15202,0,17157,1,16159,1,13405,1,17224,1,17338,1,17370,1,18817,1,16593,1,17979,1,17015,1),dim=c(2,60),dimnames=list(c('Uitvoer','x'),1:60))
>  y <- array(NA,dim=c(2,60),dimnames=list(c('Uitvoer','x'),1:60))
>  for (i in 1:dim(x)[1])
+  {
+  	for (j in 1:dim(x)[2])
+  	{
+  		y[i,j] <- as.numeric(x[i,j])
+  	}
+  }
> par3 = 'No Linear Trend'
> par2 = 'Do not include Seasonal Dummies'
> par1 = '1'
> #'GNU S' R Code compiled by R2WASP v. 1.0.44 ()
> #Author: Prof. Dr. P. Wessa
> #To cite this work: AUTHOR(S), (YEAR), YOUR SOFTWARE TITLE (vNUMBER) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_YOURPAGE.wasp/
> #Source of accompanying publication: Office for Research, Development, and Education
> #Technical description: Write here your technical program description (don't use hard returns!)
> library(lattice)
> library(lmtest)
Loading required package: zoo
Attaching package: 'zoo'
	The following object(s) are masked from package:base :
	 as.Date.numeric 
> n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
> par1 <- as.numeric(par1)
> x <- t(y)
> k <- length(x[1,])
> n <- length(x[,1])
> x1 <- cbind(x[,par1], x[,1:k!=par1])
> mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
> colnames(x1) <- mycolnames #colnames(x)[par1]
> x <- x1
> if (par3 == 'First Differences'){
+ x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
+ for (i in 1:n-1) {
+ for (j in 1:k) {
+ x2[i,j] <- x[i+1,j] - x[i,j]
+ }
+ }
+ x <- x2
+ }
> if (par2 == 'Include Monthly Dummies'){
+ x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
+ for (i in 1:11){
+ x2[seq(i,n,12),i] <- 1
+ }
+ x <- cbind(x, x2)
+ }
> if (par2 == 'Include Quarterly Dummies'){
+ x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
+ for (i in 1:3){
+ x2[seq(i,n,4),i] <- 1
+ }
+ x <- cbind(x, x2)
+ }
> k <- length(x[1,])
> if (par3 == 'Linear Trend'){
+ x <- cbind(x, c(1:n))
+ colnames(x)[k+1] <- 't'
+ }
> x
   Uitvoer x
1     9097 0
2    12639 0
3    13040 0
4    11687 0
5    11191 0
6    11391 0
7    11793 0
8    13933 0
9    12778 0
10   11810 0
11   13698 0
12   11956 0
13   10723 0
14   13938 0
15   13979 0
16   13807 0
17   12973 0
18   12509 0
19   12934 0
20   14908 0
21   13772 0
22   13012 0
23   14049 0
24   11816 0
25   11593 0
26   14466 0
27   13615 0
28   14733 0
29   13880 0
30   13527 0
31   13584 0
32   16170 0
33   13260 0
34   14741 0
35   15486 0
36   13154 0
37   12621 0
38   15031 0
39   15452 0
40   15428 0
41   13105 0
42   14716 0
43   14180 0
44   16202 0
45   14392 0
46   15140 0
47   15960 0
48   14351 0
49   13230 0
50   15202 0
51   17157 1
52   16159 1
53   13405 1
54   17224 1
55   17338 1
56   17370 1
57   18817 1
58   16593 1
59   17979 1
60   17015 1
> k <- length(x[1,])
> df <- as.data.frame(x)
> (mylm <- lm(df))
Call:
lm(formula = df)
Coefficients:
(Intercept)            x  
      13533         3373  
> (mysum <- summary(mylm))
Call:
lm(formula = df)
Residuals:
    Min      1Q  Median      3Q     Max 
-4436.0  -748.8   202.0   968.0  2669.0 
Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  13533.0      210.2  64.389  < 2e-16 ***
x             3372.7      514.8   6.551 1.66e-08 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
Residual standard error: 1486 on 58 degrees of freedom
Multiple R-squared: 0.4253,	Adjusted R-squared: 0.4154 
F-statistic: 42.92 on 1 and 58 DF,  p-value: 1.657e-08 
> if (n > n25) {
+ kp3 <- k + 3
+ nmkm3 <- n - k - 3
+ gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
+ numgqtests <- 0
+ numsignificant1 <- 0
+ numsignificant5 <- 0
+ numsignificant10 <- 0
+ for (mypoint in kp3:nmkm3) {
+ j <- 0
+ numgqtests <- numgqtests + 1
+ for (myalt in c('greater', 'two.sided', 'less')) {
+ j <- j + 1
+ gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
+ }
+ if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
+ if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
+ if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
+ }
+ gqarr
+ }
           [,1]      [,2]       [,3]
 [1,] 0.8332118 0.3335764 0.16678822
 [2,] 0.7450393 0.5099214 0.25496069
 [3,] 0.6485095 0.7029809 0.35149047
 [4,] 0.7711674 0.4576651 0.22883256
 [5,] 0.7131598 0.5736804 0.28684020
 [6,] 0.6484878 0.7030243 0.35151216
 [7,] 0.6703203 0.6593595 0.32967973
 [8,] 0.6141400 0.7717200 0.38586001
 [9,] 0.7117545 0.5764910 0.28824549
[10,] 0.7542211 0.4915578 0.24577888
[11,] 0.7751445 0.4497110 0.22485548
[12,] 0.7676186 0.4647628 0.23238138
[13,] 0.7234328 0.5531344 0.27656721
[14,] 0.6863160 0.6273680 0.31368398
[15,] 0.6419887 0.7160226 0.35801131
[16,] 0.7350494 0.5299012 0.26495059
[17,] 0.7033966 0.5932069 0.29660344
[18,] 0.6589599 0.6820801 0.34104006
[19,] 0.6347044 0.7305912 0.36529561
[20,] 0.6868110 0.6263781 0.31318904
[21,] 0.7864976 0.4270048 0.21350240
[22,] 0.7899446 0.4201107 0.21005536
[23,] 0.7609245 0.4781510 0.23907551
[24,] 0.7704982 0.4590035 0.22950176
[25,] 0.7370061 0.5259877 0.26299387
[26,] 0.7026416 0.5947169 0.29735845
[27,] 0.6673353 0.6653294 0.33266472
[28,] 0.8142427 0.3715146 0.18575732
[29,] 0.7946330 0.4107340 0.20536700
[30,] 0.7734385 0.4531231 0.22656153
[31,] 0.7970023 0.4059954 0.20299768
[32,] 0.7834238 0.4331524 0.21657620
[33,] 0.8266485 0.3467031 0.17335154
[34,] 0.8064054 0.3871892 0.19359458
[35,] 0.8053697 0.3892607 0.19463035
[36,] 0.7984858 0.4030283 0.20151417
[37,] 0.8035408 0.3929183 0.19645917
[38,] 0.7560791 0.4878418 0.24392092
[39,] 0.7043416 0.5913169 0.29565845
[40,] 0.7519104 0.4961792 0.24808959
[41,] 0.6851989 0.6296021 0.31480106
[42,] 0.6267517 0.7464966 0.37324831
[43,] 0.6575431 0.6849139 0.34245694
[44,] 0.5660301 0.8679398 0.43396989
[45,] 0.5386336 0.9227327 0.46136635
[46,] 0.4487423 0.8974847 0.55125767
[47,] 0.3417680 0.6835360 0.65823201
[48,] 0.2603130 0.5206260 0.73968701
[49,] 0.9260081 0.1479837 0.07399186
[50,] 0.8542015 0.2915970 0.14579850
[51,] 0.7239653 0.5520694 0.27603472
> postscript(file="/var/www/html/rcomp/tmp/1kr611227532964.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
> points(x[,1]-mysum$resid)
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/2d6i51227532964.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/31rkf1227532964.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/4exhc1227532964.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/5dgh01227532964.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
> qqline(mysum$resid)
> grid()
> dev.off()
null device 
          1 
> (myerror <- as.ts(mysum$resid))
Time Series:
Start = 1 
End = 60 
Frequency = 1 
       1        2        3        4        5        6        7        8 
-4436.04  -894.04  -493.04 -1846.04 -2342.04 -2142.04 -1740.04   399.96 
       9       10       11       12       13       14       15       16 
 -755.04 -1723.04   164.96 -1577.04 -2810.04   404.96   445.96   273.96 
      17       18       19       20       21       22       23       24 
 -560.04 -1024.04  -599.04  1374.96   238.96  -521.04   515.96 -1717.04 
      25       26       27       28       29       30       31       32 
-1940.04   932.96    81.96  1199.96   346.96    -6.04    50.96  2636.96 
      33       34       35       36       37       38       39       40 
 -273.04  1207.96  1952.96  -379.04  -912.04  1497.96  1918.96  1894.96 
      41       42       43       44       45       46       47       48 
 -428.04  1182.96   646.96  2668.96   858.96  1606.96  2426.96   817.96 
      49       50       51       52       53       54       55       56 
 -303.04  1668.96   251.30  -746.70 -3500.70   318.30   432.30   464.30 
      57       58       59       60 
 1911.30  -312.70  1073.30   109.30 
> postscript(file="/var/www/html/rcomp/tmp/6tuk51227532964.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> dum <- cbind(lag(myerror,k=1),myerror)
> dum
Time Series:
Start = 0 
End = 60 
Frequency = 1 
   lag(myerror, k = 1)  myerror
 0            -4436.04       NA
 1             -894.04 -4436.04
 2             -493.04  -894.04
 3            -1846.04  -493.04
 4            -2342.04 -1846.04
 5            -2142.04 -2342.04
 6            -1740.04 -2142.04
 7              399.96 -1740.04
 8             -755.04   399.96
 9            -1723.04  -755.04
10              164.96 -1723.04
11            -1577.04   164.96
12            -2810.04 -1577.04
13              404.96 -2810.04
14              445.96   404.96
15              273.96   445.96
16             -560.04   273.96
17            -1024.04  -560.04
18             -599.04 -1024.04
19             1374.96  -599.04
20              238.96  1374.96
21             -521.04   238.96
22              515.96  -521.04
23            -1717.04   515.96
24            -1940.04 -1717.04
25              932.96 -1940.04
26               81.96   932.96
27             1199.96    81.96
28              346.96  1199.96
29               -6.04   346.96
30               50.96    -6.04
31             2636.96    50.96
32             -273.04  2636.96
33             1207.96  -273.04
34             1952.96  1207.96
35             -379.04  1952.96
36             -912.04  -379.04
37             1497.96  -912.04
38             1918.96  1497.96
39             1894.96  1918.96
40             -428.04  1894.96
41             1182.96  -428.04
42              646.96  1182.96
43             2668.96   646.96
44              858.96  2668.96
45             1606.96   858.96
46             2426.96  1606.96
47              817.96  2426.96
48             -303.04   817.96
49             1668.96  -303.04
50              251.30  1668.96
51             -746.70   251.30
52            -3500.70  -746.70
53              318.30 -3500.70
54              432.30   318.30
55              464.30   432.30
56             1911.30   464.30
57             -312.70  1911.30
58             1073.30  -312.70
59              109.30  1073.30
60                  NA   109.30
> dum1 <- dum[2:length(myerror),]
> dum1
      lag(myerror, k = 1)  myerror
 [1,]             -894.04 -4436.04
 [2,]             -493.04  -894.04
 [3,]            -1846.04  -493.04
 [4,]            -2342.04 -1846.04
 [5,]            -2142.04 -2342.04
 [6,]            -1740.04 -2142.04
 [7,]              399.96 -1740.04
 [8,]             -755.04   399.96
 [9,]            -1723.04  -755.04
[10,]              164.96 -1723.04
[11,]            -1577.04   164.96
[12,]            -2810.04 -1577.04
[13,]              404.96 -2810.04
[14,]              445.96   404.96
[15,]              273.96   445.96
[16,]             -560.04   273.96
[17,]            -1024.04  -560.04
[18,]             -599.04 -1024.04
[19,]             1374.96  -599.04
[20,]              238.96  1374.96
[21,]             -521.04   238.96
[22,]              515.96  -521.04
[23,]            -1717.04   515.96
[24,]            -1940.04 -1717.04
[25,]              932.96 -1940.04
[26,]               81.96   932.96
[27,]             1199.96    81.96
[28,]              346.96  1199.96
[29,]               -6.04   346.96
[30,]               50.96    -6.04
[31,]             2636.96    50.96
[32,]             -273.04  2636.96
[33,]             1207.96  -273.04
[34,]             1952.96  1207.96
[35,]             -379.04  1952.96
[36,]             -912.04  -379.04
[37,]             1497.96  -912.04
[38,]             1918.96  1497.96
[39,]             1894.96  1918.96
[40,]             -428.04  1894.96
[41,]             1182.96  -428.04
[42,]              646.96  1182.96
[43,]             2668.96   646.96
[44,]              858.96  2668.96
[45,]             1606.96   858.96
[46,]             2426.96  1606.96
[47,]              817.96  2426.96
[48,]             -303.04   817.96
[49,]             1668.96  -303.04
[50,]              251.30  1668.96
[51,]             -746.70   251.30
[52,]            -3500.70  -746.70
[53,]              318.30 -3500.70
[54,]              432.30   318.30
[55,]              464.30   432.30
[56,]             1911.30   464.30
[57,]             -312.70  1911.30
[58,]             1073.30  -312.70
[59,]              109.30  1073.30
> z <- as.data.frame(dum1)
> z
   lag(myerror, k = 1)  myerror
1              -894.04 -4436.04
2              -493.04  -894.04
3             -1846.04  -493.04
4             -2342.04 -1846.04
5             -2142.04 -2342.04
6             -1740.04 -2142.04
7               399.96 -1740.04
8              -755.04   399.96
9             -1723.04  -755.04
10              164.96 -1723.04
11            -1577.04   164.96
12            -2810.04 -1577.04
13              404.96 -2810.04
14              445.96   404.96
15              273.96   445.96
16             -560.04   273.96
17            -1024.04  -560.04
18             -599.04 -1024.04
19             1374.96  -599.04
20              238.96  1374.96
21             -521.04   238.96
22              515.96  -521.04
23            -1717.04   515.96
24            -1940.04 -1717.04
25              932.96 -1940.04
26               81.96   932.96
27             1199.96    81.96
28              346.96  1199.96
29               -6.04   346.96
30               50.96    -6.04
31             2636.96    50.96
32             -273.04  2636.96
33             1207.96  -273.04
34             1952.96  1207.96
35             -379.04  1952.96
36             -912.04  -379.04
37             1497.96  -912.04
38             1918.96  1497.96
39             1894.96  1918.96
40             -428.04  1894.96
41             1182.96  -428.04
42              646.96  1182.96
43             2668.96   646.96
44              858.96  2668.96
45             1606.96   858.96
46             2426.96  1606.96
47              817.96  2426.96
48             -303.04   817.96
49             1668.96  -303.04
50              251.30  1668.96
51             -746.70   251.30
52            -3500.70  -746.70
53              318.30 -3500.70
54              432.30   318.30
55              464.30   432.30
56             1911.30   464.30
57             -312.70  1911.30
58             1073.30  -312.70
59              109.30  1073.30
> plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
> lines(lowess(z))
> abline(lm(z))
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/765kq1227532964.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/8u1c11227532964.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/94xbe1227532964.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
> plot(mylm, las = 1, sub='Residual Diagnostics')
> par(opar)
> dev.off()
null device 
          1 
> if (n > n25) {
+ postscript(file="/var/www/html/rcomp/tmp/10upqm1227532964.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
+ plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
+ grid()
+ dev.off()
+ }
null device 
          1 
> 
> #Note: the /var/www/html/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab
> load(file="/var/www/html/rcomp/createtable")
> 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
> a<-table.row.end(a)
> myeq <- colnames(x)[1]
> myeq <- paste(myeq, '[t] = ', sep='')
> for (i in 1:k){
+ if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
+ myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
+ if (rownames(mysum$coefficients)[i] != '(Intercept)') {
+ myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
+ if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
+ }
+ }
> myeq <- paste(myeq, ' + e[t]')
> a<-table.row.start(a)
> a<-table.element(a, myeq)
> a<-table.row.end(a)
> a<-table.end(a)
> table.save(a,file="/var/www/html/rcomp/tmp/11mkcu1227532964.tab") 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a,'Variable',header=TRUE)
> a<-table.element(a,'Parameter',header=TRUE)
> a<-table.element(a,'S.D.',header=TRUE)
> a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
> a<-table.element(a,'2-tail p-value',header=TRUE)
> a<-table.element(a,'1-tail p-value',header=TRUE)
> a<-table.row.end(a)
> for (i in 1:k){
+ a<-table.row.start(a)
+ a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
+ a<-table.element(a,mysum$coefficients[i,1])
+ a<-table.element(a, round(mysum$coefficients[i,2],6))
+ a<-table.element(a, round(mysum$coefficients[i,3],4))
+ a<-table.element(a, round(mysum$coefficients[i,4],6))
+ a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
+ a<-table.row.end(a)
+ }
> a<-table.end(a)
> table.save(a,file="/var/www/html/rcomp/tmp/1245qd1227532964.tab") 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple R',1,TRUE)
> a<-table.element(a, sqrt(mysum$r.squared))
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'R-squared',1,TRUE)
> a<-table.element(a, mysum$r.squared)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Adjusted R-squared',1,TRUE)
> a<-table.element(a, mysum$adj.r.squared)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'F-TEST (value)',1,TRUE)
> a<-table.element(a, mysum$fstatistic[1])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
> a<-table.element(a, mysum$fstatistic[2])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
> a<-table.element(a, mysum$fstatistic[3])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'p-value',1,TRUE)
> a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
> a<-table.element(a, mysum$sigma)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
> a<-table.element(a, sum(myerror*myerror))
> a<-table.row.end(a)
> a<-table.end(a)
> table.save(a,file="/var/www/html/rcomp/tmp/13t45y1227532964.tab") 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Time or Index', 1, TRUE)
> a<-table.element(a, 'Actuals', 1, TRUE)
> a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
> a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
> a<-table.row.end(a)
> for (i in 1:n) {
+ a<-table.row.start(a)
+ a<-table.element(a,i, 1, TRUE)
+ a<-table.element(a,x[i])
+ a<-table.element(a,x[i]-mysum$resid[i])
+ a<-table.element(a,mysum$resid[i])
+ a<-table.row.end(a)
+ }
> a<-table.end(a)
> table.save(a,file="/var/www/html/rcomp/tmp/144b1c1227532964.tab") 
> if (n > n25) {
+ a<-table.start()
+ a<-table.row.start(a)
+ a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'p-values',header=TRUE)
+ a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'breakpoint index',header=TRUE)
+ a<-table.element(a,'greater',header=TRUE)
+ a<-table.element(a,'2-sided',header=TRUE)
+ a<-table.element(a,'less',header=TRUE)
+ a<-table.row.end(a)
+ for (mypoint in kp3:nmkm3) {
+ a<-table.row.start(a)
+ a<-table.element(a,mypoint,header=TRUE)
+ a<-table.element(a,gqarr[mypoint-kp3+1,1])
+ a<-table.element(a,gqarr[mypoint-kp3+1,2])
+ a<-table.element(a,gqarr[mypoint-kp3+1,3])
+ a<-table.row.end(a)
+ }
+ a<-table.end(a)
+ table.save(a,file="/var/www/html/rcomp/tmp/15by0i1227532964.tab") 
+ a<-table.start()
+ a<-table.row.start(a)
+ a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'Description',header=TRUE)
+ a<-table.element(a,'# significant tests',header=TRUE)
+ a<-table.element(a,'% significant tests',header=TRUE)
+ a<-table.element(a,'OK/NOK',header=TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'1% type I error level',header=TRUE)
+ a<-table.element(a,numsignificant1)
+ a<-table.element(a,numsignificant1/numgqtests)
+ if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
+ a<-table.element(a,dum)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'5% type I error level',header=TRUE)
+ a<-table.element(a,numsignificant5)
+ a<-table.element(a,numsignificant5/numgqtests)
+ if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
+ a<-table.element(a,dum)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'10% type I error level',header=TRUE)
+ a<-table.element(a,numsignificant10)
+ a<-table.element(a,numsignificant10/numgqtests)
+ if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
+ a<-table.element(a,dum)
+ a<-table.row.end(a)
+ a<-table.end(a)
+ table.save(a,file="/var/www/html/rcomp/tmp/1662uo1227532964.tab") 
+ }
> 
> system("convert tmp/1kr611227532964.ps tmp/1kr611227532964.png")
> system("convert tmp/2d6i51227532964.ps tmp/2d6i51227532964.png")
> system("convert tmp/31rkf1227532964.ps tmp/31rkf1227532964.png")
> system("convert tmp/4exhc1227532964.ps tmp/4exhc1227532964.png")
> system("convert tmp/5dgh01227532964.ps tmp/5dgh01227532964.png")
> system("convert tmp/6tuk51227532964.ps tmp/6tuk51227532964.png")
> system("convert tmp/765kq1227532964.ps tmp/765kq1227532964.png")
> system("convert tmp/8u1c11227532964.ps tmp/8u1c11227532964.png")
> system("convert tmp/94xbe1227532964.ps tmp/94xbe1227532964.png")
> system("convert tmp/10upqm1227532964.ps tmp/10upqm1227532964.png")
> 
> 
> proc.time()
   user  system elapsed 
  2.442   1.537   2.940