R version 2.8.0 (2008-10-20)
Copyright (C) 2008 The R Foundation for Statistical Computing
ISBN 3-900051-07-0
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> x <- array(list(12300.00,0.00,12092.80,0.00,12380.80,0.00,12196.90,0.00,9455.00,0.00,13168.00,0.00,13427.90,0.00,11980.50,0.00,11884.80,0.00,11691.70,0.00,12233.80,0.00,14341.40,0.00,13130.70,0.00,12421.10,0.00,14285.80,0.00,12864.60,0.00,11160.20,0.00,14316.20,0.00,14388.70,0.00,14013.90,0.00,13419.00,0.00,12769.60,0.00,13315.50,0.00,15332.90,0.00,14243.00,0.00,13824.40,0.00,14962.90,0.00,13202.90,0.00,12199.00,0.00,15508.90,0.00,14199.80,0.00,15169.60,0.00,14058.00,0.00,13786.20,0.00,14147.90,0.00,16541.70,0.00,13587.50,0.00,15582.40,0.00,15802.80,0.00,14130.50,0.00,12923.20,0.00,15612.20,1.00,16033.70,1.00,16036.60,1.00,14037.80,1.00,15330.60,1.00,15038.30,1.00,17401.80,1.00,14992.50,1.00,16043.70,1.00,16929.60,1.00,15921.30,1.00,14417.20,1.00,15961.00,1.00,17851.90,1.00,16483.90,1.00,14215.50,1.00,17429.70,1.00,17839.50,1.00,17629.20,1.00),dim=c(2,60),dimnames=list(c('x','y'),1:60))
>  y <- array(NA,dim=c(2,60),dimnames=list(c('x','y'),1:60))
>  for (i in 1:dim(x)[1])
+  {
+  	for (j in 1:dim(x)[2])
+  	{
+  		y[i,j] <- as.numeric(x[i,j])
+  	}
+  }
> par3 = 'Linear Trend'
> par2 = 'Include Monthly Dummies'
> par1 = '1'
> #'GNU S' R Code compiled by R2WASP v. 1.0.44 ()
> #Author: Prof. Dr. P. Wessa
> #To cite this work: AUTHOR(S), (YEAR), YOUR SOFTWARE TITLE (vNUMBER) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_YOURPAGE.wasp/
> #Source of accompanying publication: Office for Research, Development, and Education
> #Technical description: Write here your technical program description (don't use hard returns!)
> library(lattice)
> library(lmtest)
Loading required package: zoo
Attaching package: 'zoo'
	The following object(s) are masked from package:base :
	 as.Date.numeric 
> n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
> par1 <- as.numeric(par1)
> x <- t(y)
> k <- length(x[1,])
> n <- length(x[,1])
> x1 <- cbind(x[,par1], x[,1:k!=par1])
> mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
> colnames(x1) <- mycolnames #colnames(x)[par1]
> x <- x1
> if (par3 == 'First Differences'){
+ x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
+ for (i in 1:n-1) {
+ for (j in 1:k) {
+ x2[i,j] <- x[i+1,j] - x[i,j]
+ }
+ }
+ x <- x2
+ }
> if (par2 == 'Include Monthly Dummies'){
+ x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
+ for (i in 1:11){
+ x2[seq(i,n,12),i] <- 1
+ }
+ x <- cbind(x, x2)
+ }
> if (par2 == 'Include Quarterly Dummies'){
+ x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
+ for (i in 1:3){
+ x2[seq(i,n,4),i] <- 1
+ }
+ x <- cbind(x, x2)
+ }
> k <- length(x[1,])
> if (par3 == 'Linear Trend'){
+ x <- cbind(x, c(1:n))
+ colnames(x)[k+1] <- 't'
+ }
> x
         x y M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11  t
1  12300.0 0  1  0  0  0  0  0  0  0  0   0   0  1
2  12092.8 0  0  1  0  0  0  0  0  0  0   0   0  2
3  12380.8 0  0  0  1  0  0  0  0  0  0   0   0  3
4  12196.9 0  0  0  0  1  0  0  0  0  0   0   0  4
5   9455.0 0  0  0  0  0  1  0  0  0  0   0   0  5
6  13168.0 0  0  0  0  0  0  1  0  0  0   0   0  6
7  13427.9 0  0  0  0  0  0  0  1  0  0   0   0  7
8  11980.5 0  0  0  0  0  0  0  0  1  0   0   0  8
9  11884.8 0  0  0  0  0  0  0  0  0  1   0   0  9
10 11691.7 0  0  0  0  0  0  0  0  0  0   1   0 10
11 12233.8 0  0  0  0  0  0  0  0  0  0   0   1 11
12 14341.4 0  0  0  0  0  0  0  0  0  0   0   0 12
13 13130.7 0  1  0  0  0  0  0  0  0  0   0   0 13
14 12421.1 0  0  1  0  0  0  0  0  0  0   0   0 14
15 14285.8 0  0  0  1  0  0  0  0  0  0   0   0 15
16 12864.6 0  0  0  0  1  0  0  0  0  0   0   0 16
17 11160.2 0  0  0  0  0  1  0  0  0  0   0   0 17
18 14316.2 0  0  0  0  0  0  1  0  0  0   0   0 18
19 14388.7 0  0  0  0  0  0  0  1  0  0   0   0 19
20 14013.9 0  0  0  0  0  0  0  0  1  0   0   0 20
21 13419.0 0  0  0  0  0  0  0  0  0  1   0   0 21
22 12769.6 0  0  0  0  0  0  0  0  0  0   1   0 22
23 13315.5 0  0  0  0  0  0  0  0  0  0   0   1 23
24 15332.9 0  0  0  0  0  0  0  0  0  0   0   0 24
25 14243.0 0  1  0  0  0  0  0  0  0  0   0   0 25
26 13824.4 0  0  1  0  0  0  0  0  0  0   0   0 26
27 14962.9 0  0  0  1  0  0  0  0  0  0   0   0 27
28 13202.9 0  0  0  0  1  0  0  0  0  0   0   0 28
29 12199.0 0  0  0  0  0  1  0  0  0  0   0   0 29
30 15508.9 0  0  0  0  0  0  1  0  0  0   0   0 30
31 14199.8 0  0  0  0  0  0  0  1  0  0   0   0 31
32 15169.6 0  0  0  0  0  0  0  0  1  0   0   0 32
33 14058.0 0  0  0  0  0  0  0  0  0  1   0   0 33
34 13786.2 0  0  0  0  0  0  0  0  0  0   1   0 34
35 14147.9 0  0  0  0  0  0  0  0  0  0   0   1 35
36 16541.7 0  0  0  0  0  0  0  0  0  0   0   0 36
37 13587.5 0  1  0  0  0  0  0  0  0  0   0   0 37
38 15582.4 0  0  1  0  0  0  0  0  0  0   0   0 38
39 15802.8 0  0  0  1  0  0  0  0  0  0   0   0 39
40 14130.5 0  0  0  0  1  0  0  0  0  0   0   0 40
41 12923.2 0  0  0  0  0  1  0  0  0  0   0   0 41
42 15612.2 1  0  0  0  0  0  1  0  0  0   0   0 42
43 16033.7 1  0  0  0  0  0  0  1  0  0   0   0 43
44 16036.6 1  0  0  0  0  0  0  0  1  0   0   0 44
45 14037.8 1  0  0  0  0  0  0  0  0  1   0   0 45
46 15330.6 1  0  0  0  0  0  0  0  0  0   1   0 46
47 15038.3 1  0  0  0  0  0  0  0  0  0   0   1 47
48 17401.8 1  0  0  0  0  0  0  0  0  0   0   0 48
49 14992.5 1  1  0  0  0  0  0  0  0  0   0   0 49
50 16043.7 1  0  1  0  0  0  0  0  0  0   0   0 50
51 16929.6 1  0  0  1  0  0  0  0  0  0   0   0 51
52 15921.3 1  0  0  0  1  0  0  0  0  0   0   0 52
53 14417.2 1  0  0  0  0  1  0  0  0  0   0   0 53
54 15961.0 1  0  0  0  0  0  1  0  0  0   0   0 54
55 17851.9 1  0  0  0  0  0  0  1  0  0   0   0 55
56 16483.9 1  0  0  0  0  0  0  0  1  0   0   0 56
57 14215.5 1  0  0  0  0  0  0  0  0  1   0   0 57
58 17429.7 1  0  0  0  0  0  0  0  0  0   1   0 58
59 17839.5 1  0  0  0  0  0  0  0  0  0   0   1 59
60 17629.2 1  0  0  0  0  0  0  0  0  0   0   0 60
> k <- length(x[1,])
> df <- as.data.frame(x)
> (mylm <- lm(df))
Call:
lm(formula = df)
Coefficients:
(Intercept)            y           M1           M2           M3           M4  
   13325.20        16.94     -1703.84     -1442.74      -644.28     -1934.46  
         M5           M6           M7           M8           M9          M10  
   -3647.82      -849.90      -663.80     -1188.34     -2483.26     -1885.76  
        M11            t  
   -1653.36        81.04  
> (mysum <- summary(mylm))
Call:
lm(formula = df)
Residuals:
     Min       1Q   Median       3Q      Max 
-1262.63  -453.77    93.11   333.34  1369.39 
Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept) 13325.204    339.128  39.293  < 2e-16 ***
y              16.943    292.055   0.058 0.953988    
M1          -1703.838    390.609  -4.362 7.20e-05 ***
M2          -1442.737    389.903  -3.700 0.000574 ***
M3           -644.277    389.353  -1.655 0.104787    
M4          -1934.456    388.960  -4.973 9.61e-06 ***
M5          -3647.815    388.724  -9.384 2.95e-12 ***
M6           -849.904    389.923  -2.180 0.034438 *  
M7           -663.803    389.059  -1.706 0.094719 .  
M8          -1188.342    388.350  -3.060 0.003687 ** 
M9          -2483.262    387.798  -6.403 7.18e-08 ***
M10         -1885.761    387.404  -4.868 1.37e-05 ***
M11         -1653.361    387.167  -4.270 9.67e-05 ***
t              81.039      7.824  10.358 1.31e-13 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
Residual standard error: 612 on 46 degrees of freedom
Multiple R-squared: 0.9106,	Adjusted R-squared: 0.8853 
F-statistic: 36.04 on 13 and 46 DF,  p-value: < 2.2e-16 
> if (n > n25) {
+ kp3 <- k + 3
+ nmkm3 <- n - k - 3
+ gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
+ numgqtests <- 0
+ numsignificant1 <- 0
+ numsignificant5 <- 0
+ numsignificant10 <- 0
+ for (mypoint in kp3:nmkm3) {
+ j <- 0
+ numgqtests <- numgqtests + 1
+ for (myalt in c('greater', 'two.sided', 'less')) {
+ j <- j + 1
+ gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
+ }
+ if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
+ if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
+ if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
+ }
+ gqarr
+ }
             [,1]       [,2]      [,3]
 [1,] 0.442251436 0.88450287 0.5577486
 [2,] 0.277006390 0.55401278 0.7229936
 [3,] 0.159072779 0.31814556 0.8409272
 [4,] 0.170697679 0.34139536 0.8293023
 [5,] 0.134034607 0.26806921 0.8659654
 [6,] 0.083142550 0.16628510 0.9168575
 [7,] 0.046280094 0.09256019 0.9537199
 [8,] 0.024432639 0.04886528 0.9755674
 [9,] 0.022332710 0.04466542 0.9776673
[10,] 0.011780020 0.02356004 0.9882200
[11,] 0.005502995 0.01100599 0.9944970
[12,] 0.012541969 0.02508394 0.9874580
[13,] 0.006971655 0.01394331 0.9930283
[14,] 0.006929885 0.01385977 0.9930701
[15,] 0.037679077 0.07535815 0.9623209
[16,] 0.033466252 0.06693250 0.9665337
[17,] 0.072199783 0.14439957 0.9278002
[18,] 0.059852960 0.11970592 0.9401470
[19,] 0.044436082 0.08887216 0.9555639
[20,] 0.037047433 0.07409487 0.9629526
[21,] 0.110616733 0.22123347 0.8893833
[22,] 0.130114196 0.26022839 0.8698858
[23,] 0.085112923 0.17022585 0.9148871
[24,] 0.055428248 0.11085650 0.9445718
[25,] 0.028106453 0.05621291 0.9718935
[26,] 0.019715549 0.03943110 0.9802845
[27,] 0.011581718 0.02316344 0.9884183
> postscript(file="/var/www/html/rcomp/tmp/1ra9y1227551398.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
> points(x[,1]-mysum$resid)
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/2hytu1227551398.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/3cg461227551398.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/4xpl61227551398.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/52jje1227551398.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
> qqline(mysum$resid)
> grid()
> dev.off()
null device 
          1 
> (myerror <- as.ts(mysum$resid))
Time Series:
Start = 1 
End = 60 
Frequency = 1 
          1           2           3           4           5           6 
  597.59457    48.25457  -543.24543   481.99457  -627.58543   206.46326 
          7           8           9          10          11          12 
  199.22326  -804.67674   313.50326  -558.13674  -329.47674    43.72326 
         13          14          15          16          17          18 
  455.82163  -595.91837   389.28163   177.22163   105.14163   382.19032 
         19          20          21          22          23          24 
  187.55032   256.25032   875.23032  -452.70968  -220.24968    62.75032 
         25          26          27          28          29          30 
  595.64869  -165.09131    93.90869  -456.95131   171.46869   602.41738 
         31          32          33          34          35          36 
 -973.82262   439.47738   541.75738  -408.58262  -360.32262   299.07738 
         37          38          39          40          41          42 
-1032.32425   620.43575   -38.66425  -501.82425   -76.80425  -283.69901 
         43          44          45          46          47          48 
 -129.33901   317.06099  -467.85901   146.40099  -459.33901   169.76099 
         49          50          51          52          53          54 
 -616.74065    92.31935    98.71935   299.55935   427.77935  -907.37195 
         55          56          57          58          59          60 
  716.38805  -208.11195 -1262.63195  1273.02805  1369.38805  -575.31195 
> postscript(file="/var/www/html/rcomp/tmp/6z4j51227551398.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> dum <- cbind(lag(myerror,k=1),myerror)
> dum
Time Series:
Start = 0 
End = 60 
Frequency = 1 
   lag(myerror, k = 1)     myerror
 0           597.59457          NA
 1            48.25457   597.59457
 2          -543.24543    48.25457
 3           481.99457  -543.24543
 4          -627.58543   481.99457
 5           206.46326  -627.58543
 6           199.22326   206.46326
 7          -804.67674   199.22326
 8           313.50326  -804.67674
 9          -558.13674   313.50326
10          -329.47674  -558.13674
11            43.72326  -329.47674
12           455.82163    43.72326
13          -595.91837   455.82163
14           389.28163  -595.91837
15           177.22163   389.28163
16           105.14163   177.22163
17           382.19032   105.14163
18           187.55032   382.19032
19           256.25032   187.55032
20           875.23032   256.25032
21          -452.70968   875.23032
22          -220.24968  -452.70968
23            62.75032  -220.24968
24           595.64869    62.75032
25          -165.09131   595.64869
26            93.90869  -165.09131
27          -456.95131    93.90869
28           171.46869  -456.95131
29           602.41738   171.46869
30          -973.82262   602.41738
31           439.47738  -973.82262
32           541.75738   439.47738
33          -408.58262   541.75738
34          -360.32262  -408.58262
35           299.07738  -360.32262
36         -1032.32425   299.07738
37           620.43575 -1032.32425
38           -38.66425   620.43575
39          -501.82425   -38.66425
40           -76.80425  -501.82425
41          -283.69901   -76.80425
42          -129.33901  -283.69901
43           317.06099  -129.33901
44          -467.85901   317.06099
45           146.40099  -467.85901
46          -459.33901   146.40099
47           169.76099  -459.33901
48          -616.74065   169.76099
49            92.31935  -616.74065
50            98.71935    92.31935
51           299.55935    98.71935
52           427.77935   299.55935
53          -907.37195   427.77935
54           716.38805  -907.37195
55          -208.11195   716.38805
56         -1262.63195  -208.11195
57          1273.02805 -1262.63195
58          1369.38805  1273.02805
59          -575.31195  1369.38805
60                  NA  -575.31195
> dum1 <- dum[2:length(myerror),]
> dum1
      lag(myerror, k = 1)     myerror
 [1,]            48.25457   597.59457
 [2,]          -543.24543    48.25457
 [3,]           481.99457  -543.24543
 [4,]          -627.58543   481.99457
 [5,]           206.46326  -627.58543
 [6,]           199.22326   206.46326
 [7,]          -804.67674   199.22326
 [8,]           313.50326  -804.67674
 [9,]          -558.13674   313.50326
[10,]          -329.47674  -558.13674
[11,]            43.72326  -329.47674
[12,]           455.82163    43.72326
[13,]          -595.91837   455.82163
[14,]           389.28163  -595.91837
[15,]           177.22163   389.28163
[16,]           105.14163   177.22163
[17,]           382.19032   105.14163
[18,]           187.55032   382.19032
[19,]           256.25032   187.55032
[20,]           875.23032   256.25032
[21,]          -452.70968   875.23032
[22,]          -220.24968  -452.70968
[23,]            62.75032  -220.24968
[24,]           595.64869    62.75032
[25,]          -165.09131   595.64869
[26,]            93.90869  -165.09131
[27,]          -456.95131    93.90869
[28,]           171.46869  -456.95131
[29,]           602.41738   171.46869
[30,]          -973.82262   602.41738
[31,]           439.47738  -973.82262
[32,]           541.75738   439.47738
[33,]          -408.58262   541.75738
[34,]          -360.32262  -408.58262
[35,]           299.07738  -360.32262
[36,]         -1032.32425   299.07738
[37,]           620.43575 -1032.32425
[38,]           -38.66425   620.43575
[39,]          -501.82425   -38.66425
[40,]           -76.80425  -501.82425
[41,]          -283.69901   -76.80425
[42,]          -129.33901  -283.69901
[43,]           317.06099  -129.33901
[44,]          -467.85901   317.06099
[45,]           146.40099  -467.85901
[46,]          -459.33901   146.40099
[47,]           169.76099  -459.33901
[48,]          -616.74065   169.76099
[49,]            92.31935  -616.74065
[50,]            98.71935    92.31935
[51,]           299.55935    98.71935
[52,]           427.77935   299.55935
[53,]          -907.37195   427.77935
[54,]           716.38805  -907.37195
[55,]          -208.11195   716.38805
[56,]         -1262.63195  -208.11195
[57,]          1273.02805 -1262.63195
[58,]          1369.38805  1273.02805
[59,]          -575.31195  1369.38805
> z <- as.data.frame(dum1)
> z
   lag(myerror, k = 1)     myerror
1             48.25457   597.59457
2           -543.24543    48.25457
3            481.99457  -543.24543
4           -627.58543   481.99457
5            206.46326  -627.58543
6            199.22326   206.46326
7           -804.67674   199.22326
8            313.50326  -804.67674
9           -558.13674   313.50326
10          -329.47674  -558.13674
11            43.72326  -329.47674
12           455.82163    43.72326
13          -595.91837   455.82163
14           389.28163  -595.91837
15           177.22163   389.28163
16           105.14163   177.22163
17           382.19032   105.14163
18           187.55032   382.19032
19           256.25032   187.55032
20           875.23032   256.25032
21          -452.70968   875.23032
22          -220.24968  -452.70968
23            62.75032  -220.24968
24           595.64869    62.75032
25          -165.09131   595.64869
26            93.90869  -165.09131
27          -456.95131    93.90869
28           171.46869  -456.95131
29           602.41738   171.46869
30          -973.82262   602.41738
31           439.47738  -973.82262
32           541.75738   439.47738
33          -408.58262   541.75738
34          -360.32262  -408.58262
35           299.07738  -360.32262
36         -1032.32425   299.07738
37           620.43575 -1032.32425
38           -38.66425   620.43575
39          -501.82425   -38.66425
40           -76.80425  -501.82425
41          -283.69901   -76.80425
42          -129.33901  -283.69901
43           317.06099  -129.33901
44          -467.85901   317.06099
45           146.40099  -467.85901
46          -459.33901   146.40099
47           169.76099  -459.33901
48          -616.74065   169.76099
49            92.31935  -616.74065
50            98.71935    92.31935
51           299.55935    98.71935
52           427.77935   299.55935
53          -907.37195   427.77935
54           716.38805  -907.37195
55          -208.11195   716.38805
56         -1262.63195  -208.11195
57          1273.02805 -1262.63195
58          1369.38805  1273.02805
59          -575.31195  1369.38805
> plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
> lines(lowess(z))
> abline(lm(z))
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/78n541227551398.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/8docv1227551398.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/9fn5s1227551398.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
> plot(mylm, las = 1, sub='Residual Diagnostics')
> par(opar)
> dev.off()
null device 
          1 
> if (n > n25) {
+ postscript(file="/var/www/html/rcomp/tmp/10ywyh1227551398.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
+ plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
+ grid()
+ dev.off()
+ }
null device 
          1 
> 
> #Note: the /var/www/html/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab
> load(file="/var/www/html/rcomp/createtable")
> 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
> a<-table.row.end(a)
> myeq <- colnames(x)[1]
> myeq <- paste(myeq, '[t] = ', sep='')
> for (i in 1:k){
+ if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
+ myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
+ if (rownames(mysum$coefficients)[i] != '(Intercept)') {
+ myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
+ if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
+ }
+ }
> myeq <- paste(myeq, ' + e[t]')
> a<-table.row.start(a)
> a<-table.element(a, myeq)
> a<-table.row.end(a)
> a<-table.end(a)
> table.save(a,file="/var/www/html/rcomp/tmp/115aay1227551398.tab") 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a,'Variable',header=TRUE)
> a<-table.element(a,'Parameter',header=TRUE)
> a<-table.element(a,'S.D.',header=TRUE)
> a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
> a<-table.element(a,'2-tail p-value',header=TRUE)
> a<-table.element(a,'1-tail p-value',header=TRUE)
> a<-table.row.end(a)
> for (i in 1:k){
+ a<-table.row.start(a)
+ a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
+ a<-table.element(a,mysum$coefficients[i,1])
+ a<-table.element(a, round(mysum$coefficients[i,2],6))
+ a<-table.element(a, round(mysum$coefficients[i,3],4))
+ a<-table.element(a, round(mysum$coefficients[i,4],6))
+ a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
+ a<-table.row.end(a)
+ }
> a<-table.end(a)
> table.save(a,file="/var/www/html/rcomp/tmp/1276dt1227551398.tab") 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple R',1,TRUE)
> a<-table.element(a, sqrt(mysum$r.squared))
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'R-squared',1,TRUE)
> a<-table.element(a, mysum$r.squared)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Adjusted R-squared',1,TRUE)
> a<-table.element(a, mysum$adj.r.squared)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'F-TEST (value)',1,TRUE)
> a<-table.element(a, mysum$fstatistic[1])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
> a<-table.element(a, mysum$fstatistic[2])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
> a<-table.element(a, mysum$fstatistic[3])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'p-value',1,TRUE)
> a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
> a<-table.element(a, mysum$sigma)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
> a<-table.element(a, sum(myerror*myerror))
> a<-table.row.end(a)
> a<-table.end(a)
> table.save(a,file="/var/www/html/rcomp/tmp/133qyp1227551398.tab") 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Time or Index', 1, TRUE)
> a<-table.element(a, 'Actuals', 1, TRUE)
> a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
> a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
> a<-table.row.end(a)
> for (i in 1:n) {
+ a<-table.row.start(a)
+ a<-table.element(a,i, 1, TRUE)
+ a<-table.element(a,x[i])
+ a<-table.element(a,x[i]-mysum$resid[i])
+ a<-table.element(a,mysum$resid[i])
+ a<-table.row.end(a)
+ }
> a<-table.end(a)
> table.save(a,file="/var/www/html/rcomp/tmp/14tlhu1227551398.tab") 
> if (n > n25) {
+ a<-table.start()
+ a<-table.row.start(a)
+ a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'p-values',header=TRUE)
+ a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'breakpoint index',header=TRUE)
+ a<-table.element(a,'greater',header=TRUE)
+ a<-table.element(a,'2-sided',header=TRUE)
+ a<-table.element(a,'less',header=TRUE)
+ a<-table.row.end(a)
+ for (mypoint in kp3:nmkm3) {
+ a<-table.row.start(a)
+ a<-table.element(a,mypoint,header=TRUE)
+ a<-table.element(a,gqarr[mypoint-kp3+1,1])
+ a<-table.element(a,gqarr[mypoint-kp3+1,2])
+ a<-table.element(a,gqarr[mypoint-kp3+1,3])
+ a<-table.row.end(a)
+ }
+ a<-table.end(a)
+ table.save(a,file="/var/www/html/rcomp/tmp/155mom1227551398.tab") 
+ a<-table.start()
+ a<-table.row.start(a)
+ a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'Description',header=TRUE)
+ a<-table.element(a,'# significant tests',header=TRUE)
+ a<-table.element(a,'% significant tests',header=TRUE)
+ a<-table.element(a,'OK/NOK',header=TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'1% type I error level',header=TRUE)
+ a<-table.element(a,numsignificant1)
+ a<-table.element(a,numsignificant1/numgqtests)
+ if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
+ a<-table.element(a,dum)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'5% type I error level',header=TRUE)
+ a<-table.element(a,numsignificant5)
+ a<-table.element(a,numsignificant5/numgqtests)
+ if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
+ a<-table.element(a,dum)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'10% type I error level',header=TRUE)
+ a<-table.element(a,numsignificant10)
+ a<-table.element(a,numsignificant10/numgqtests)
+ if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
+ a<-table.element(a,dum)
+ a<-table.row.end(a)
+ a<-table.end(a)
+ table.save(a,file="/var/www/html/rcomp/tmp/16ieva1227551398.tab") 
+ }
> 
> system("convert tmp/1ra9y1227551398.ps tmp/1ra9y1227551398.png")
> system("convert tmp/2hytu1227551398.ps tmp/2hytu1227551398.png")
> system("convert tmp/3cg461227551398.ps tmp/3cg461227551398.png")
> system("convert tmp/4xpl61227551398.ps tmp/4xpl61227551398.png")
> system("convert tmp/52jje1227551398.ps tmp/52jje1227551398.png")
> system("convert tmp/6z4j51227551398.ps tmp/6z4j51227551398.png")
> system("convert tmp/78n541227551398.ps tmp/78n541227551398.png")
> system("convert tmp/8docv1227551398.ps tmp/8docv1227551398.png")
> system("convert tmp/9fn5s1227551398.ps tmp/9fn5s1227551398.png")
> system("convert tmp/10ywyh1227551398.ps tmp/10ywyh1227551398.png")
> 
> 
> proc.time()
   user  system elapsed 
  2.415   1.588   3.971