R version 2.8.0 (2008-10-20)
Copyright (C) 2008 The R Foundation for Statistical Computing
ISBN 3-900051-07-0
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> x <- array(list(106.7,0,110.2,0,125.9,0,100.1,0,106.4,0,114.8,0,81.3,0,87,0,104.2,0,108,0,105,0,94.5,0,92,0,95.9,0,108.8,0,103.4,0,102.1,0,110.1,0,83.2,0,82.7,0,106.8,0,113.7,0,102.5,0,96.6,0,92.1,0,95.6,0,102.3,0,98.6,0,98.2,0,104.5,0,84,0,73.8,0,103.9,0,106,0,97.2,0,102.6,0,89,0,93.8,0,116.7,1,106.8,1,98.5,1,118.7,1,90,1,91.9,1,113.3,1,113.1,1,104.1,1,108.7,1,96.7,1,101,1,116.9,1,105.8,1,99,1,129.4,1,83,1,88.9,1,115.9,1,104.2,1,113.4,1,112.2,1,100.8,1,107.3,1,126.6,1,102.9,1,117.9,1,128.8,1,87.5,1,93.8,1,122.7,1,126.2,1,124.6,1,116.7,1,115.2,1,111.1,1,129.9,1,113.3,1,118.5,1,133.5,1,102.1,1,102.4,1),dim=c(2,80),dimnames=list(c('y','x'),1:80))
>  y <- array(NA,dim=c(2,80),dimnames=list(c('y','x'),1:80))
>  for (i in 1:dim(x)[1])
+  {
+  	for (j in 1:dim(x)[2])
+  	{
+  		y[i,j] <- as.numeric(x[i,j])
+  	}
+  }
> par3 = 'No Linear Trend'
> par2 = 'Do not include Seasonal Dummies'
> par1 = '1'
> #'GNU S' R Code compiled by R2WASP v. 1.0.44 ()
> #Author: Prof. Dr. P. Wessa
> #To cite this work: AUTHOR(S), (YEAR), YOUR SOFTWARE TITLE (vNUMBER) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_YOURPAGE.wasp/
> #Source of accompanying publication: Office for Research, Development, and Education
> #Technical description: Write here your technical program description (don't use hard returns!)
> library(lattice)
> library(lmtest)
Loading required package: zoo
Attaching package: 'zoo'
	The following object(s) are masked from package:base :
	 as.Date.numeric 
> n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
> par1 <- as.numeric(par1)
> x <- t(y)
> k <- length(x[1,])
> n <- length(x[,1])
> x1 <- cbind(x[,par1], x[,1:k!=par1])
> mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
> colnames(x1) <- mycolnames #colnames(x)[par1]
> x <- x1
> if (par3 == 'First Differences'){
+ x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
+ for (i in 1:n-1) {
+ for (j in 1:k) {
+ x2[i,j] <- x[i+1,j] - x[i,j]
+ }
+ }
+ x <- x2
+ }
> if (par2 == 'Include Monthly Dummies'){
+ x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
+ for (i in 1:11){
+ x2[seq(i,n,12),i] <- 1
+ }
+ x <- cbind(x, x2)
+ }
> if (par2 == 'Include Quarterly Dummies'){
+ x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
+ for (i in 1:3){
+ x2[seq(i,n,4),i] <- 1
+ }
+ x <- cbind(x, x2)
+ }
> k <- length(x[1,])
> if (par3 == 'Linear Trend'){
+ x <- cbind(x, c(1:n))
+ colnames(x)[k+1] <- 't'
+ }
> x
       y x
1  106.7 0
2  110.2 0
3  125.9 0
4  100.1 0
5  106.4 0
6  114.8 0
7   81.3 0
8   87.0 0
9  104.2 0
10 108.0 0
11 105.0 0
12  94.5 0
13  92.0 0
14  95.9 0
15 108.8 0
16 103.4 0
17 102.1 0
18 110.1 0
19  83.2 0
20  82.7 0
21 106.8 0
22 113.7 0
23 102.5 0
24  96.6 0
25  92.1 0
26  95.6 0
27 102.3 0
28  98.6 0
29  98.2 0
30 104.5 0
31  84.0 0
32  73.8 0
33 103.9 0
34 106.0 0
35  97.2 0
36 102.6 0
37  89.0 0
38  93.8 0
39 116.7 1
40 106.8 1
41  98.5 1
42 118.7 1
43  90.0 1
44  91.9 1
45 113.3 1
46 113.1 1
47 104.1 1
48 108.7 1
49  96.7 1
50 101.0 1
51 116.9 1
52 105.8 1
53  99.0 1
54 129.4 1
55  83.0 1
56  88.9 1
57 115.9 1
58 104.2 1
59 113.4 1
60 112.2 1
61 100.8 1
62 107.3 1
63 126.6 1
64 102.9 1
65 117.9 1
66 128.8 1
67  87.5 1
68  93.8 1
69 122.7 1
70 126.2 1
71 124.6 1
72 116.7 1
73 115.2 1
74 111.1 1
75 129.9 1
76 113.3 1
77 118.5 1
78 133.5 1
79 102.1 1
80 102.4 1
> k <- length(x[1,])
> df <- as.data.frame(x)
> (mylm <- lm(df))
Call:
lm(formula = df)
Coefficients:
(Intercept)            x  
      99.57        10.20  
> (mysum <- summary(mylm))
Call:
lm(formula = df)
Residuals:
    Min      1Q  Median      3Q     Max 
-26.762  -7.491   2.486   7.135  26.334 
Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)   99.566      1.901  52.387  < 2e-16 ***
x             10.196      2.623   3.887 0.000212 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
Residual standard error: 11.72 on 78 degrees of freedom
Multiple R-squared: 0.1623,	Adjusted R-squared: 0.1515 
F-statistic: 15.11 on 1 and 78 DF,  p-value: 0.0002117 
> if (n > n25) {
+ kp3 <- k + 3
+ nmkm3 <- n - k - 3
+ gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
+ numgqtests <- 0
+ numsignificant1 <- 0
+ numsignificant5 <- 0
+ numsignificant10 <- 0
+ for (mypoint in kp3:nmkm3) {
+ j <- 0
+ numgqtests <- numgqtests + 1
+ for (myalt in c('greater', 'two.sided', 'less')) {
+ j <- j + 1
+ gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
+ }
+ if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
+ if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
+ if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
+ }
+ gqarr
+ }
            [,1]       [,2]       [,3]
 [1,] 0.57299127 0.85401746 0.42700873
 [2,] 0.44122328 0.88244656 0.55877672
 [3,] 0.86759339 0.26481322 0.13240661
 [4,] 0.90613335 0.18773330 0.09386665
 [5,] 0.85190610 0.29618779 0.14809390
 [6,] 0.79360688 0.41278625 0.20639312
 [7,] 0.71743462 0.56513075 0.28256538
 [8,] 0.67647877 0.64704246 0.32352123
 [9,] 0.65413691 0.69172617 0.34586309
[10,] 0.58900926 0.82198149 0.41099074
[11,] 0.53374178 0.93251644 0.46625822
[12,] 0.45103462 0.90206925 0.54896538
[13,] 0.37093846 0.74187691 0.62906154
[14,] 0.33685839 0.67371677 0.66314161
[15,] 0.45524577 0.91049154 0.54475423
[16,] 0.55701401 0.88597198 0.44298599
[17,] 0.50421763 0.99156474 0.49578237
[18,] 0.52544688 0.94910623 0.47455312
[19,] 0.45728118 0.91456236 0.54271882
[20,] 0.39600276 0.79200553 0.60399724
[21,] 0.36200281 0.72400562 0.63799719
[22,] 0.30774807 0.61549615 0.69225193
[23,] 0.25327294 0.50654589 0.74672706
[24,] 0.20291542 0.40583084 0.79708458
[25,] 0.15972938 0.31945875 0.84027062
[26,] 0.13136256 0.26272512 0.86863744
[27,] 0.16198018 0.32396035 0.83801982
[28,] 0.35809778 0.71619555 0.64190222
[29,] 0.30674875 0.61349751 0.69325125
[30,] 0.27195209 0.54390418 0.72804791
[31,] 0.22167052 0.44334104 0.77832948
[32,] 0.18670914 0.37341828 0.81329086
[33,] 0.16789169 0.33578338 0.83210831
[34,] 0.13504471 0.27008941 0.86495529
[35,] 0.10651638 0.21303277 0.89348362
[36,] 0.08524448 0.17048897 0.91475552
[37,] 0.08205006 0.16410011 0.91794994
[38,] 0.07348379 0.14696758 0.92651621
[39,] 0.11561960 0.23123921 0.88438040
[40,] 0.14240667 0.28481334 0.85759333
[41,] 0.11862059 0.23724119 0.88137941
[42,] 0.09522771 0.19045542 0.90477229
[43,] 0.07381219 0.14762438 0.92618781
[44,] 0.05406864 0.10813728 0.94593136
[45,] 0.05409353 0.10818706 0.94590647
[46,] 0.04466962 0.08933923 0.95533038
[47,] 0.03814518 0.07629036 0.96185482
[48,] 0.02736128 0.05472256 0.97263872
[49,] 0.02472642 0.04945283 0.97527358
[50,] 0.04937339 0.09874678 0.95062661
[51,] 0.16563148 0.33126296 0.83436852
[52,] 0.29056282 0.58112565 0.70943718
[53,] 0.24954857 0.49909714 0.75045143
[54,] 0.21858505 0.43717009 0.78141495
[55,] 0.17507010 0.35014019 0.82492990
[56,] 0.13550809 0.27101619 0.86449191
[57,] 0.13295262 0.26590524 0.86704738
[58,] 0.10579589 0.21159179 0.89420411
[59,] 0.12344192 0.24688383 0.87655808
[60,] 0.11225673 0.22451346 0.88774327
[61,] 0.08553381 0.17106762 0.91446619
[62,] 0.11030691 0.22061382 0.88969309
[63,] 0.33140950 0.66281901 0.66859050
[64,] 0.58364994 0.83270012 0.41635006
[65,] 0.52217419 0.95565162 0.47782581
[66,] 0.50441547 0.99116907 0.49558453
[67,] 0.46417748 0.92835497 0.53582252
[68,] 0.35323707 0.70647414 0.64676293
[69,] 0.24586725 0.49173450 0.75413275
[70,] 0.16256920 0.32513839 0.83743080
[71,] 0.18323464 0.36646927 0.81676536
> postscript(file="/var/www/html/freestat/rcomp/tmp/1ignl1227566948.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
> points(x[,1]-mysum$resid)
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/freestat/rcomp/tmp/2kr9n1227566948.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/freestat/rcomp/tmp/3is7f1227566948.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/freestat/rcomp/tmp/4hbfv1227566948.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/freestat/rcomp/tmp/5y3se1227566948.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
> qqline(mysum$resid)
> grid()
> dev.off()
null device 
          1 
> (myerror <- as.ts(mysum$resid))
Time Series:
Start = 1 
End = 80 
Frequency = 1 
          1           2           3           4           5           6 
  7.1342105  10.6342105  26.3342105   0.5342105   6.8342105  15.2342105 
          7           8           9          10          11          12 
-18.2657895 -12.5657895   4.6342105   8.4342105   5.4342105  -5.0657895 
         13          14          15          16          17          18 
 -7.5657895  -3.6657895   9.2342105   3.8342105   2.5342105  10.5342105 
         19          20          21          22          23          24 
-16.3657895 -16.8657895   7.2342105  14.1342105   2.9342105  -2.9657895 
         25          26          27          28          29          30 
 -7.4657895  -3.9657895   2.7342105  -0.9657895  -1.3657895   4.9342105 
         31          32          33          34          35          36 
-15.5657895 -25.7657895   4.3342105   6.4342105  -2.3657895   3.0342105 
         37          38          39          40          41          42 
-10.5657895  -5.7657895   6.9380952  -2.9619048 -11.2619048   8.9380952 
         43          44          45          46          47          48 
-19.7619048 -17.8619048   3.5380952   3.3380952  -5.6619048  -1.0619048 
         49          50          51          52          53          54 
-13.0619048  -8.7619048   7.1380952  -3.9619048 -10.7619048  19.6380952 
         55          56          57          58          59          60 
-26.7619048 -20.8619048   6.1380952  -5.5619048   3.6380952   2.4380952 
         61          62          63          64          65          66 
 -8.9619048  -2.4619048  16.8380952  -6.8619048   8.1380952  19.0380952 
         67          68          69          70          71          72 
-22.2619048 -15.9619048  12.9380952  16.4380952  14.8380952   6.9380952 
         73          74          75          76          77          78 
  5.4380952   1.3380952  20.1380952   3.5380952   8.7380952  23.7380952 
         79          80 
 -7.6619048  -7.3619048 
> postscript(file="/var/www/html/freestat/rcomp/tmp/6xlpk1227566948.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> dum <- cbind(lag(myerror,k=1),myerror)
> dum
Time Series:
Start = 0 
End = 80 
Frequency = 1 
   lag(myerror, k = 1)     myerror
 0           7.1342105          NA
 1          10.6342105   7.1342105
 2          26.3342105  10.6342105
 3           0.5342105  26.3342105
 4           6.8342105   0.5342105
 5          15.2342105   6.8342105
 6         -18.2657895  15.2342105
 7         -12.5657895 -18.2657895
 8           4.6342105 -12.5657895
 9           8.4342105   4.6342105
10           5.4342105   8.4342105
11          -5.0657895   5.4342105
12          -7.5657895  -5.0657895
13          -3.6657895  -7.5657895
14           9.2342105  -3.6657895
15           3.8342105   9.2342105
16           2.5342105   3.8342105
17          10.5342105   2.5342105
18         -16.3657895  10.5342105
19         -16.8657895 -16.3657895
20           7.2342105 -16.8657895
21          14.1342105   7.2342105
22           2.9342105  14.1342105
23          -2.9657895   2.9342105
24          -7.4657895  -2.9657895
25          -3.9657895  -7.4657895
26           2.7342105  -3.9657895
27          -0.9657895   2.7342105
28          -1.3657895  -0.9657895
29           4.9342105  -1.3657895
30         -15.5657895   4.9342105
31         -25.7657895 -15.5657895
32           4.3342105 -25.7657895
33           6.4342105   4.3342105
34          -2.3657895   6.4342105
35           3.0342105  -2.3657895
36         -10.5657895   3.0342105
37          -5.7657895 -10.5657895
38           6.9380952  -5.7657895
39          -2.9619048   6.9380952
40         -11.2619048  -2.9619048
41           8.9380952 -11.2619048
42         -19.7619048   8.9380952
43         -17.8619048 -19.7619048
44           3.5380952 -17.8619048
45           3.3380952   3.5380952
46          -5.6619048   3.3380952
47          -1.0619048  -5.6619048
48         -13.0619048  -1.0619048
49          -8.7619048 -13.0619048
50           7.1380952  -8.7619048
51          -3.9619048   7.1380952
52         -10.7619048  -3.9619048
53          19.6380952 -10.7619048
54         -26.7619048  19.6380952
55         -20.8619048 -26.7619048
56           6.1380952 -20.8619048
57          -5.5619048   6.1380952
58           3.6380952  -5.5619048
59           2.4380952   3.6380952
60          -8.9619048   2.4380952
61          -2.4619048  -8.9619048
62          16.8380952  -2.4619048
63          -6.8619048  16.8380952
64           8.1380952  -6.8619048
65          19.0380952   8.1380952
66         -22.2619048  19.0380952
67         -15.9619048 -22.2619048
68          12.9380952 -15.9619048
69          16.4380952  12.9380952
70          14.8380952  16.4380952
71           6.9380952  14.8380952
72           5.4380952   6.9380952
73           1.3380952   5.4380952
74          20.1380952   1.3380952
75           3.5380952  20.1380952
76           8.7380952   3.5380952
77          23.7380952   8.7380952
78          -7.6619048  23.7380952
79          -7.3619048  -7.6619048
80                  NA  -7.3619048
> dum1 <- dum[2:length(myerror),]
> dum1
      lag(myerror, k = 1)     myerror
 [1,]          10.6342105   7.1342105
 [2,]          26.3342105  10.6342105
 [3,]           0.5342105  26.3342105
 [4,]           6.8342105   0.5342105
 [5,]          15.2342105   6.8342105
 [6,]         -18.2657895  15.2342105
 [7,]         -12.5657895 -18.2657895
 [8,]           4.6342105 -12.5657895
 [9,]           8.4342105   4.6342105
[10,]           5.4342105   8.4342105
[11,]          -5.0657895   5.4342105
[12,]          -7.5657895  -5.0657895
[13,]          -3.6657895  -7.5657895
[14,]           9.2342105  -3.6657895
[15,]           3.8342105   9.2342105
[16,]           2.5342105   3.8342105
[17,]          10.5342105   2.5342105
[18,]         -16.3657895  10.5342105
[19,]         -16.8657895 -16.3657895
[20,]           7.2342105 -16.8657895
[21,]          14.1342105   7.2342105
[22,]           2.9342105  14.1342105
[23,]          -2.9657895   2.9342105
[24,]          -7.4657895  -2.9657895
[25,]          -3.9657895  -7.4657895
[26,]           2.7342105  -3.9657895
[27,]          -0.9657895   2.7342105
[28,]          -1.3657895  -0.9657895
[29,]           4.9342105  -1.3657895
[30,]         -15.5657895   4.9342105
[31,]         -25.7657895 -15.5657895
[32,]           4.3342105 -25.7657895
[33,]           6.4342105   4.3342105
[34,]          -2.3657895   6.4342105
[35,]           3.0342105  -2.3657895
[36,]         -10.5657895   3.0342105
[37,]          -5.7657895 -10.5657895
[38,]           6.9380952  -5.7657895
[39,]          -2.9619048   6.9380952
[40,]         -11.2619048  -2.9619048
[41,]           8.9380952 -11.2619048
[42,]         -19.7619048   8.9380952
[43,]         -17.8619048 -19.7619048
[44,]           3.5380952 -17.8619048
[45,]           3.3380952   3.5380952
[46,]          -5.6619048   3.3380952
[47,]          -1.0619048  -5.6619048
[48,]         -13.0619048  -1.0619048
[49,]          -8.7619048 -13.0619048
[50,]           7.1380952  -8.7619048
[51,]          -3.9619048   7.1380952
[52,]         -10.7619048  -3.9619048
[53,]          19.6380952 -10.7619048
[54,]         -26.7619048  19.6380952
[55,]         -20.8619048 -26.7619048
[56,]           6.1380952 -20.8619048
[57,]          -5.5619048   6.1380952
[58,]           3.6380952  -5.5619048
[59,]           2.4380952   3.6380952
[60,]          -8.9619048   2.4380952
[61,]          -2.4619048  -8.9619048
[62,]          16.8380952  -2.4619048
[63,]          -6.8619048  16.8380952
[64,]           8.1380952  -6.8619048
[65,]          19.0380952   8.1380952
[66,]         -22.2619048  19.0380952
[67,]         -15.9619048 -22.2619048
[68,]          12.9380952 -15.9619048
[69,]          16.4380952  12.9380952
[70,]          14.8380952  16.4380952
[71,]           6.9380952  14.8380952
[72,]           5.4380952   6.9380952
[73,]           1.3380952   5.4380952
[74,]          20.1380952   1.3380952
[75,]           3.5380952  20.1380952
[76,]           8.7380952   3.5380952
[77,]          23.7380952   8.7380952
[78,]          -7.6619048  23.7380952
[79,]          -7.3619048  -7.6619048
> z <- as.data.frame(dum1)
> z
   lag(myerror, k = 1)     myerror
1           10.6342105   7.1342105
2           26.3342105  10.6342105
3            0.5342105  26.3342105
4            6.8342105   0.5342105
5           15.2342105   6.8342105
6          -18.2657895  15.2342105
7          -12.5657895 -18.2657895
8            4.6342105 -12.5657895
9            8.4342105   4.6342105
10           5.4342105   8.4342105
11          -5.0657895   5.4342105
12          -7.5657895  -5.0657895
13          -3.6657895  -7.5657895
14           9.2342105  -3.6657895
15           3.8342105   9.2342105
16           2.5342105   3.8342105
17          10.5342105   2.5342105
18         -16.3657895  10.5342105
19         -16.8657895 -16.3657895
20           7.2342105 -16.8657895
21          14.1342105   7.2342105
22           2.9342105  14.1342105
23          -2.9657895   2.9342105
24          -7.4657895  -2.9657895
25          -3.9657895  -7.4657895
26           2.7342105  -3.9657895
27          -0.9657895   2.7342105
28          -1.3657895  -0.9657895
29           4.9342105  -1.3657895
30         -15.5657895   4.9342105
31         -25.7657895 -15.5657895
32           4.3342105 -25.7657895
33           6.4342105   4.3342105
34          -2.3657895   6.4342105
35           3.0342105  -2.3657895
36         -10.5657895   3.0342105
37          -5.7657895 -10.5657895
38           6.9380952  -5.7657895
39          -2.9619048   6.9380952
40         -11.2619048  -2.9619048
41           8.9380952 -11.2619048
42         -19.7619048   8.9380952
43         -17.8619048 -19.7619048
44           3.5380952 -17.8619048
45           3.3380952   3.5380952
46          -5.6619048   3.3380952
47          -1.0619048  -5.6619048
48         -13.0619048  -1.0619048
49          -8.7619048 -13.0619048
50           7.1380952  -8.7619048
51          -3.9619048   7.1380952
52         -10.7619048  -3.9619048
53          19.6380952 -10.7619048
54         -26.7619048  19.6380952
55         -20.8619048 -26.7619048
56           6.1380952 -20.8619048
57          -5.5619048   6.1380952
58           3.6380952  -5.5619048
59           2.4380952   3.6380952
60          -8.9619048   2.4380952
61          -2.4619048  -8.9619048
62          16.8380952  -2.4619048
63          -6.8619048  16.8380952
64           8.1380952  -6.8619048
65          19.0380952   8.1380952
66         -22.2619048  19.0380952
67         -15.9619048 -22.2619048
68          12.9380952 -15.9619048
69          16.4380952  12.9380952
70          14.8380952  16.4380952
71           6.9380952  14.8380952
72           5.4380952   6.9380952
73           1.3380952   5.4380952
74          20.1380952   1.3380952
75           3.5380952  20.1380952
76           8.7380952   3.5380952
77          23.7380952   8.7380952
78          -7.6619048  23.7380952
79          -7.3619048  -7.6619048
> plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
> lines(lowess(z))
> abline(lm(z))
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/freestat/rcomp/tmp/7kkug1227566948.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/freestat/rcomp/tmp/89s7s1227566948.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/freestat/rcomp/tmp/92i4b1227566948.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
> plot(mylm, las = 1, sub='Residual Diagnostics')
> par(opar)
> dev.off()
null device 
          1 
> if (n > n25) {
+ postscript(file="/var/www/html/freestat/rcomp/tmp/10cvfo1227566948.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
+ plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
+ grid()
+ dev.off()
+ }
null device 
          1 
> 
> #Note: the /var/www/html/freestat/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab
> load(file="/var/www/html/freestat/rcomp/createtable")
> 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
> a<-table.row.end(a)
> myeq <- colnames(x)[1]
> myeq <- paste(myeq, '[t] = ', sep='')
> for (i in 1:k){
+ if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
+ myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
+ if (rownames(mysum$coefficients)[i] != '(Intercept)') {
+ myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
+ if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
+ }
+ }
> myeq <- paste(myeq, ' + e[t]')
> a<-table.row.start(a)
> a<-table.element(a, myeq)
> a<-table.row.end(a)
> a<-table.end(a)
> table.save(a,file="/var/www/html/freestat/rcomp/tmp/111l8s1227566948.tab") 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a,'Variable',header=TRUE)
> a<-table.element(a,'Parameter',header=TRUE)
> a<-table.element(a,'S.D.',header=TRUE)
> a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
> a<-table.element(a,'2-tail p-value',header=TRUE)
> a<-table.element(a,'1-tail p-value',header=TRUE)
> a<-table.row.end(a)
> for (i in 1:k){
+ a<-table.row.start(a)
+ a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
+ a<-table.element(a,mysum$coefficients[i,1])
+ a<-table.element(a, round(mysum$coefficients[i,2],6))
+ a<-table.element(a, round(mysum$coefficients[i,3],4))
+ a<-table.element(a, round(mysum$coefficients[i,4],6))
+ a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
+ a<-table.row.end(a)
+ }
> a<-table.end(a)
> table.save(a,file="/var/www/html/freestat/rcomp/tmp/12mjpi1227566948.tab") 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple R',1,TRUE)
> a<-table.element(a, sqrt(mysum$r.squared))
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'R-squared',1,TRUE)
> a<-table.element(a, mysum$r.squared)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Adjusted R-squared',1,TRUE)
> a<-table.element(a, mysum$adj.r.squared)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'F-TEST (value)',1,TRUE)
> a<-table.element(a, mysum$fstatistic[1])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
> a<-table.element(a, mysum$fstatistic[2])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
> a<-table.element(a, mysum$fstatistic[3])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'p-value',1,TRUE)
> a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
> a<-table.element(a, mysum$sigma)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
> a<-table.element(a, sum(myerror*myerror))
> a<-table.row.end(a)
> a<-table.end(a)
> table.save(a,file="/var/www/html/freestat/rcomp/tmp/13uanq1227566948.tab") 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Time or Index', 1, TRUE)
> a<-table.element(a, 'Actuals', 1, TRUE)
> a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
> a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
> a<-table.row.end(a)
> for (i in 1:n) {
+ a<-table.row.start(a)
+ a<-table.element(a,i, 1, TRUE)
+ a<-table.element(a,x[i])
+ a<-table.element(a,x[i]-mysum$resid[i])
+ a<-table.element(a,mysum$resid[i])
+ a<-table.row.end(a)
+ }
> a<-table.end(a)
> table.save(a,file="/var/www/html/freestat/rcomp/tmp/14znt61227566948.tab") 
> if (n > n25) {
+ a<-table.start()
+ a<-table.row.start(a)
+ a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'p-values',header=TRUE)
+ a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'breakpoint index',header=TRUE)
+ a<-table.element(a,'greater',header=TRUE)
+ a<-table.element(a,'2-sided',header=TRUE)
+ a<-table.element(a,'less',header=TRUE)
+ a<-table.row.end(a)
+ for (mypoint in kp3:nmkm3) {
+ a<-table.row.start(a)
+ a<-table.element(a,mypoint,header=TRUE)
+ a<-table.element(a,gqarr[mypoint-kp3+1,1])
+ a<-table.element(a,gqarr[mypoint-kp3+1,2])
+ a<-table.element(a,gqarr[mypoint-kp3+1,3])
+ a<-table.row.end(a)
+ }
+ a<-table.end(a)
+ table.save(a,file="/var/www/html/freestat/rcomp/tmp/152zfo1227566948.tab") 
+ a<-table.start()
+ a<-table.row.start(a)
+ a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'Description',header=TRUE)
+ a<-table.element(a,'# significant tests',header=TRUE)
+ a<-table.element(a,'% significant tests',header=TRUE)
+ a<-table.element(a,'OK/NOK',header=TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'1% type I error level',header=TRUE)
+ a<-table.element(a,numsignificant1)
+ a<-table.element(a,numsignificant1/numgqtests)
+ if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
+ a<-table.element(a,dum)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'5% type I error level',header=TRUE)
+ a<-table.element(a,numsignificant5)
+ a<-table.element(a,numsignificant5/numgqtests)
+ if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
+ a<-table.element(a,dum)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'10% type I error level',header=TRUE)
+ a<-table.element(a,numsignificant10)
+ a<-table.element(a,numsignificant10/numgqtests)
+ if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
+ a<-table.element(a,dum)
+ a<-table.row.end(a)
+ a<-table.end(a)
+ table.save(a,file="/var/www/html/freestat/rcomp/tmp/16r3fh1227566948.tab") 
+ }
> 
> system("convert tmp/1ignl1227566948.ps tmp/1ignl1227566948.png")
> system("convert tmp/2kr9n1227566948.ps tmp/2kr9n1227566948.png")
> system("convert tmp/3is7f1227566948.ps tmp/3is7f1227566948.png")
> system("convert tmp/4hbfv1227566948.ps tmp/4hbfv1227566948.png")
> system("convert tmp/5y3se1227566948.ps tmp/5y3se1227566948.png")
> system("convert tmp/6xlpk1227566948.ps tmp/6xlpk1227566948.png")
> system("convert tmp/7kkug1227566948.ps tmp/7kkug1227566948.png")
> system("convert tmp/89s7s1227566948.ps tmp/89s7s1227566948.png")
> system("convert tmp/92i4b1227566948.ps tmp/92i4b1227566948.png")
> system("convert tmp/10cvfo1227566948.ps tmp/10cvfo1227566948.png")
> 
> 
> proc.time()
   user  system elapsed 
  3.916   2.512   4.215