R version 2.9.0 (2009-04-17) Copyright (C) 2009 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- c(62,64,62,64,64,69,69,65,56,58,53,62,55,60,59,58,53,57,57,53,54,53,57,57,55,49,50,49,54,58,58,52,56,52,59,53,52,53,51,50,56,52,46,48,46,48,48,49,53,48,51,48,50,55,52,53,52,55,53,53,56,54,52,55,54,59,56,56,51,53,52,51,46,49,46,55,57,53,52,53,50,54,53,50,51,52,47,51,49,53,52,45,53,51,48,48,48,48,40,43,40,39,39,36,41,39,40,39,46,40,37,37,44,41,40,36,38,43,42,45,46) > par10 = 'FALSE' > par9 = '1' > par8 = '2' > par7 = '2' > par6 = '3' > par5 = '12' > par4 = '0' > par3 = '1' > par2 = '1' > par1 = '12' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: AUTHOR(S), (YEAR), YOUR SOFTWARE TITLE (vNUMBER) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_YOURPAGE.wasp/ > #Source of accompanying publication: Office for Research, Development, and Education > #Technical description: Write here your technical program description (don't use hard returns!) > par1 <- as.numeric(par1) #cut off periods > par2 <- as.numeric(par2) #lambda > par3 <- as.numeric(par3) #degree of non-seasonal differencing > par4 <- as.numeric(par4) #degree of seasonal differencing > par5 <- as.numeric(par5) #seasonal period > par6 <- as.numeric(par6) #p > par7 <- as.numeric(par7) #q > par8 <- as.numeric(par8) #P > par9 <- as.numeric(par9) #Q > if (par10 == 'TRUE') par10 <- TRUE > if (par10 == 'FALSE') par10 <- FALSE > if (par2 == 0) x <- log(x) > if (par2 != 0) x <- x^par2 > lx <- length(x) > first <- lx - 2*par1 > nx <- lx - par1 > nx1 <- nx + 1 > fx <- lx - nx > if (fx < 1) { + fx <- par5 + nx1 <- lx + fx - 1 + first <- lx - 2*fx + } > first <- 1 > if (fx < 3) fx <- round(lx/10,0) > (arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML')) Call: arima(x = x[1:nx], order = c(par6, par3, par7), seasonal = list(order = c(par8, par4, par9), period = par5), include.mean = par10, method = "ML") Coefficients: ar1 ar2 ar3 ma1 ma2 sar1 sar2 sma1 1.0673 -0.3317 -0.4147 -1.5737 1.0000 -0.6417 0.0754 1.0000 s.e. 0.0908 0.1358 0.0942 0.0497 0.0581 0.1148 0.1289 0.1509 sigma^2 estimated as 8.624: log likelihood = -277.05, aic = 572.1 > (forecast <- predict(arima.out,fx)) $pred Time Series: Start = 110 End = 121 Frequency = 1 [1] 42.18161 43.36295 44.29296 45.16086 43.71455 43.96674 43.39683 43.17170 [9] 43.49691 44.65293 44.39997 47.40326 $se Time Series: Start = 110 End = 121 Frequency = 1 [1] 3.053329 3.421176 3.926922 4.229166 4.553332 4.885714 5.268396 5.674236 [9] 6.068559 6.411730 6.691565 6.916273 > (lb <- forecast$pred - 1.96 * forecast$se) Time Series: Start = 110 End = 121 Frequency = 1 [1] 36.19709 36.65744 36.59619 36.87170 34.79002 34.39074 33.07077 32.05019 [9] 31.60254 32.08594 31.28451 33.84737 > (ub <- forecast$pred + 1.96 * forecast$se) Time Series: Start = 110 End = 121 Frequency = 1 [1] 48.16614 50.06845 51.98972 53.45003 52.63908 53.54274 53.72288 54.29320 [9] 55.39129 57.21992 57.51544 60.95916 > if (par2 == 0) { + x <- exp(x) + forecast$pred <- exp(forecast$pred) + lb <- exp(lb) + ub <- exp(ub) + } > if (par2 != 0) { + x <- x^(1/par2) + forecast$pred <- forecast$pred^(1/par2) + lb <- lb^(1/par2) + ub <- ub^(1/par2) + } > if (par2 < 0) { + olb <- lb + lb <- ub + ub <- olb + } > (actandfor <- c(x[1:nx], forecast$pred)) [1] 62.00000 64.00000 62.00000 64.00000 64.00000 69.00000 69.00000 65.00000 [9] 56.00000 58.00000 53.00000 62.00000 55.00000 60.00000 59.00000 58.00000 [17] 53.00000 57.00000 57.00000 53.00000 54.00000 53.00000 57.00000 57.00000 [25] 55.00000 49.00000 50.00000 49.00000 54.00000 58.00000 58.00000 52.00000 [33] 56.00000 52.00000 59.00000 53.00000 52.00000 53.00000 51.00000 50.00000 [41] 56.00000 52.00000 46.00000 48.00000 46.00000 48.00000 48.00000 49.00000 [49] 53.00000 48.00000 51.00000 48.00000 50.00000 55.00000 52.00000 53.00000 [57] 52.00000 55.00000 53.00000 53.00000 56.00000 54.00000 52.00000 55.00000 [65] 54.00000 59.00000 56.00000 56.00000 51.00000 53.00000 52.00000 51.00000 [73] 46.00000 49.00000 46.00000 55.00000 57.00000 53.00000 52.00000 53.00000 [81] 50.00000 54.00000 53.00000 50.00000 51.00000 52.00000 47.00000 51.00000 [89] 49.00000 53.00000 52.00000 45.00000 53.00000 51.00000 48.00000 48.00000 [97] 48.00000 48.00000 40.00000 43.00000 40.00000 39.00000 39.00000 36.00000 [105] 41.00000 39.00000 40.00000 39.00000 46.00000 42.18161 43.36295 44.29296 [113] 45.16086 43.71455 43.96674 43.39683 43.17170 43.49691 44.65293 44.39997 [121] 47.40326 > (perc.se <- (ub-forecast$pred)/1.96/forecast$pred) Time Series: Start = 110 End = 121 Frequency = 1 [1] 0.07238531 0.07889631 0.08865794 0.09364670 0.10416057 0.11112294 [7] 0.12140048 0.13143417 0.13951701 0.14359034 0.15071101 0.14590290 > postscript(file="/var/www/html/rcomp/tmp/1h3361259962898.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mar=c(4,4,2,2),las=1) > ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub)) > plot(x,ylim=ylim,type='n',xlim=c(first,lx)) > usr <- par('usr') > rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon') > rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender') > abline(h= (-3:3)*2 , col ='gray', lty =3) > polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA) > lines(nx1:lx, lb , lty=2) > lines(nx1:lx, ub , lty=2) > lines(x, lwd=2) > lines(nx1:lx, forecast$pred , lwd=2 , col ='white') > box() > par(opar) > dev.off() null device 1 > prob.dec <- array(NA, dim=fx) > prob.sdec <- array(NA, dim=fx) > prob.ldec <- array(NA, dim=fx) > prob.pval <- array(NA, dim=fx) > perf.pe <- array(0, dim=fx) > perf.mape <- array(0, dim=fx) > perf.se <- array(0, dim=fx) > perf.mse <- array(0, dim=fx) > perf.rmse <- array(0, dim=fx) > for (i in 1:fx) { + locSD <- (ub[i] - forecast$pred[i]) / 1.96 + perf.pe[i] = (x[nx+i] - forecast$pred[i]) / forecast$pred[i] + perf.mape[i] = perf.mape[i] + abs(perf.pe[i]) + perf.se[i] = (x[nx+i] - forecast$pred[i])^2 + perf.mse[i] = perf.mse[i] + perf.se[i] + prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD) + prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD) + prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD) + prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD) + } > perf.mape = perf.mape / fx > perf.mse = perf.mse / fx > perf.rmse = sqrt(perf.mse) > postscript(file="/var/www/html/rcomp/tmp/2xfo61259962898.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub))) > dum <- forecast$pred > dum[1:12] <- x[(nx+1):lx] > lines(dum, lty=1) > lines(ub,lty=3) > lines(lb,lty=3) > dev.off() null device 1 > > #Note: the /var/www/html/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/www/html/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'Y[t]',1,header=TRUE) > a<-table.element(a,'F[t]',1,header=TRUE) > a<-table.element(a,'95% LB',1,header=TRUE) > a<-table.element(a,'95% UB',1,header=TRUE) > a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE) > mylab <- paste('P(F[t]>Y[',nx,sep='') > mylab <- paste(mylab,'])',sep='') > a<-table.element(a,mylab,1,header=TRUE) > a<-table.row.end(a) > for (i in (nx-par5):nx) { + a<-table.row.start(a) + a<-table.element(a,i,header=TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.row.end(a) + } > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(x[nx+i],4)) + a<-table.element(a,round(forecast$pred[i],4)) + a<-table.element(a,round(lb[i],4)) + a<-table.element(a,round(ub[i],4)) + a<-table.element(a,round((1-prob.pval[i]),4)) + a<-table.element(a,round((1-prob.dec[i]),4)) + a<-table.element(a,round((1-prob.sdec[i]),4)) + a<-table.element(a,round((1-prob.ldec[i]),4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/3xheg1259962898.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',7,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'% S.E.',1,header=TRUE) > a<-table.element(a,'PE',1,header=TRUE) > a<-table.element(a,'MAPE',1,header=TRUE) > a<-table.element(a,'Sq.E',1,header=TRUE) > a<-table.element(a,'MSE',1,header=TRUE) > a<-table.element(a,'RMSE',1,header=TRUE) > a<-table.row.end(a) > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(perc.se[i],4)) + a<-table.element(a,round(perf.pe[i],4)) + a<-table.element(a,round(perf.mape[i],4)) + a<-table.element(a,round(perf.se[i],4)) + a<-table.element(a,round(perf.mse[i],4)) + a<-table.element(a,round(perf.rmse[i],4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/4p22d1259962898.tab") > > system("convert tmp/1h3361259962898.ps tmp/1h3361259962898.png") > system("convert tmp/2xfo61259962898.ps tmp/2xfo61259962898.png") > > > proc.time() user system elapsed 6.503 0.909 7.542