R version 2.9.0 (2009-04-17) Copyright (C) 2009 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- array(list(3.4 + ,4.9 + ,3.2 + ,3.3 + ,3.6 + ,3.9 + ,3.4 + ,4.5 + ,3.4 + ,3.2 + ,3.3 + ,3.6 + ,3.5 + ,4.6 + ,3.4 + ,3.4 + ,3.2 + ,3.3 + ,3.2 + ,4.7 + ,3.5 + ,3.4 + ,3.4 + ,3.2 + ,3.3 + ,4.7 + ,3.2 + ,3.5 + ,3.4 + ,3.4 + ,3.3 + ,4.3 + ,3.3 + ,3.2 + ,3.5 + ,3.4 + ,3.4 + ,4.2 + ,3.3 + ,3.3 + ,3.2 + ,3.5 + ,3.7 + ,4.4 + ,3.4 + ,3.3 + ,3.3 + ,3.2 + ,3.9 + ,4 + ,3.7 + ,3.4 + ,3.3 + ,3.3 + ,4 + ,3.8 + ,3.9 + ,3.7 + ,3.4 + ,3.3 + ,3.7 + ,3.6 + ,4 + ,3.9 + ,3.7 + ,3.4 + ,3.9 + ,3.6 + ,3.7 + ,4 + ,3.9 + ,3.7 + ,4.2 + ,3.3 + ,3.9 + ,3.7 + ,4 + ,3.9 + ,4.4 + ,3.4 + ,4.2 + ,3.9 + ,3.7 + ,4 + ,4.3 + ,3.4 + ,4.4 + ,4.2 + ,3.9 + ,3.7 + ,4.2 + ,3.3 + ,4.3 + ,4.4 + ,4.2 + ,3.9 + ,4.3 + ,3.3 + ,4.2 + ,4.3 + ,4.4 + ,4.2 + ,4.3 + ,3.2 + ,4.3 + ,4.2 + ,4.3 + ,4.4 + ,4.3 + ,3.1 + ,4.3 + ,4.3 + ,4.2 + ,4.3 + ,4.5 + ,3.1 + ,4.3 + ,4.3 + ,4.3 + ,4.2 + ,5 + ,2.4 + ,4.5 + ,4.3 + ,4.3 + ,4.3 + ,5.2 + ,2.4 + ,5 + ,4.5 + ,4.3 + ,4.3 + ,5.2 + ,2.4 + ,5.2 + ,5 + ,4.5 + ,4.3 + ,5.4 + ,2.1 + ,5.2 + ,5.2 + ,5 + ,4.5 + ,5.5 + ,2 + ,5.4 + ,5.2 + ,5.2 + ,5 + ,5.4 + ,2 + ,5.5 + ,5.4 + ,5.2 + ,5.2 + ,5.5 + ,2.1 + ,5.4 + ,5.5 + ,5.4 + ,5.2 + ,5.4 + ,2.1 + ,5.5 + ,5.4 + ,5.5 + ,5.4 + ,5.7 + ,2 + ,5.4 + ,5.5 + ,5.4 + ,5.5 + ,5.7 + ,2 + ,5.7 + ,5.4 + ,5.5 + ,5.4 + ,6.1 + ,2 + ,5.7 + ,5.7 + ,5.4 + ,5.5 + ,6.5 + ,1.7 + ,6.1 + ,5.7 + ,5.7 + ,5.4 + ,6.9 + ,1.3 + ,6.5 + ,6.1 + ,5.7 + ,5.7 + ,6.8 + ,1.2 + ,6.9 + ,6.5 + ,6.1 + ,5.7 + ,6.7 + ,1.1 + ,6.8 + ,6.9 + ,6.5 + ,6.1 + ,6.6 + ,1.4 + ,6.7 + ,6.8 + ,6.9 + ,6.5 + ,6.5 + ,1.5 + ,6.6 + ,6.7 + ,6.8 + ,6.9 + ,6.4 + ,1.4 + ,6.5 + ,6.6 + ,6.7 + ,6.8 + ,6.1 + ,1.1 + ,6.4 + ,6.5 + ,6.6 + ,6.7 + ,6.2 + ,1.1 + ,6.1 + ,6.4 + ,6.5 + ,6.6 + ,6.3 + ,1 + ,6.2 + ,6.1 + ,6.4 + ,6.5 + ,6.4 + ,1.4 + ,6.3 + ,6.2 + ,6.1 + ,6.4 + ,6.5 + ,1.3 + ,6.4 + ,6.3 + ,6.2 + ,6.1 + ,6.7 + ,1.2 + ,6.5 + ,6.4 + ,6.3 + ,6.2 + ,7 + ,1.5 + ,6.7 + ,6.5 + ,6.4 + ,6.3 + ,7 + ,1.6 + ,7 + ,6.7 + ,6.5 + ,6.4 + ,6.8 + ,1.8 + ,7 + ,7 + ,6.7 + ,6.5 + ,6.7 + ,1.5 + ,6.8 + ,7 + ,7 + ,6.7 + ,6.7 + ,1.3 + ,6.7 + ,6.8 + ,7 + ,7 + ,6.5 + ,1.6 + ,6.7 + ,6.7 + ,6.8 + ,7 + ,6.4 + ,1.6 + ,6.5 + ,6.7 + ,6.7 + ,6.8 + ,6.1 + ,1.8 + ,6.4 + ,6.5 + ,6.7 + ,6.7 + ,6.2 + ,1.8 + ,6.1 + ,6.4 + ,6.5 + ,6.7 + ,6 + ,1.6 + ,6.2 + ,6.1 + ,6.4 + ,6.5 + ,6.1 + ,1.8 + ,6 + ,6.2 + ,6.1 + ,6.4 + ,6.1 + ,2 + ,6.1 + ,6 + ,6.2 + ,6.1) + ,dim=c(6 + ,56) + ,dimnames=list(c('Werkl' + ,'Infl' + ,'M1(t)' + ,'M2(t)' + ,'M3(t)' + ,'M4(t)') + ,1:56)) > y <- array(NA,dim=c(6,56),dimnames=list(c('Werkl','Infl','M1(t)','M2(t)','M3(t)','M4(t)'),1:56)) > for (i in 1:dim(x)[1]) + { + for (j in 1:dim(x)[2]) + { + y[i,j] <- as.numeric(x[i,j]) + } + } > par3 = 'No Linear Trend' > par2 = 'Include Monthly Dummies' > par1 = '1' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: AUTHOR(S), (YEAR), YOUR SOFTWARE TITLE (vNUMBER) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_YOURPAGE.wasp/ > #Source of accompanying publication: Office for Research, Development, and Education > #Technical description: Write here your technical program description (don't use hard returns!) > library(lattice) > library(lmtest) Loading required package: zoo Attaching package: 'zoo' The following object(s) are masked from package:base : as.Date.numeric > n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test > par1 <- as.numeric(par1) > x <- t(y) > k <- length(x[1,]) > n <- length(x[,1]) > x1 <- cbind(x[,par1], x[,1:k!=par1]) > mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1]) > colnames(x1) <- mycolnames #colnames(x)[par1] > x <- x1 > if (par3 == 'First Differences'){ + x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep=''))) + for (i in 1:n-1) { + for (j in 1:k) { + x2[i,j] <- x[i+1,j] - x[i,j] + } + } + x <- x2 + } > if (par2 == 'Include Monthly Dummies'){ + x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep =''))) + for (i in 1:11){ + x2[seq(i,n,12),i] <- 1 + } + x <- cbind(x, x2) + } > if (par2 == 'Include Quarterly Dummies'){ + x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep =''))) + for (i in 1:3){ + x2[seq(i,n,4),i] <- 1 + } + x <- cbind(x, x2) + } > k <- length(x[1,]) > if (par3 == 'Linear Trend'){ + x <- cbind(x, c(1:n)) + colnames(x)[k+1] <- 't' + } > x Werkl Infl M1(t) M2(t) M3(t) M4(t) M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 1 3.4 4.9 3.2 3.3 3.6 3.9 1 0 0 0 0 0 0 0 0 0 0 2 3.4 4.5 3.4 3.2 3.3 3.6 0 1 0 0 0 0 0 0 0 0 0 3 3.5 4.6 3.4 3.4 3.2 3.3 0 0 1 0 0 0 0 0 0 0 0 4 3.2 4.7 3.5 3.4 3.4 3.2 0 0 0 1 0 0 0 0 0 0 0 5 3.3 4.7 3.2 3.5 3.4 3.4 0 0 0 0 1 0 0 0 0 0 0 6 3.3 4.3 3.3 3.2 3.5 3.4 0 0 0 0 0 1 0 0 0 0 0 7 3.4 4.2 3.3 3.3 3.2 3.5 0 0 0 0 0 0 1 0 0 0 0 8 3.7 4.4 3.4 3.3 3.3 3.2 0 0 0 0 0 0 0 1 0 0 0 9 3.9 4.0 3.7 3.4 3.3 3.3 0 0 0 0 0 0 0 0 1 0 0 10 4.0 3.8 3.9 3.7 3.4 3.3 0 0 0 0 0 0 0 0 0 1 0 11 3.7 3.6 4.0 3.9 3.7 3.4 0 0 0 0 0 0 0 0 0 0 1 12 3.9 3.6 3.7 4.0 3.9 3.7 0 0 0 0 0 0 0 0 0 0 0 13 4.2 3.3 3.9 3.7 4.0 3.9 1 0 0 0 0 0 0 0 0 0 0 14 4.4 3.4 4.2 3.9 3.7 4.0 0 1 0 0 0 0 0 0 0 0 0 15 4.3 3.4 4.4 4.2 3.9 3.7 0 0 1 0 0 0 0 0 0 0 0 16 4.2 3.3 4.3 4.4 4.2 3.9 0 0 0 1 0 0 0 0 0 0 0 17 4.3 3.3 4.2 4.3 4.4 4.2 0 0 0 0 1 0 0 0 0 0 0 18 4.3 3.2 4.3 4.2 4.3 4.4 0 0 0 0 0 1 0 0 0 0 0 19 4.3 3.1 4.3 4.3 4.2 4.3 0 0 0 0 0 0 1 0 0 0 0 20 4.5 3.1 4.3 4.3 4.3 4.2 0 0 0 0 0 0 0 1 0 0 0 21 5.0 2.4 4.5 4.3 4.3 4.3 0 0 0 0 0 0 0 0 1 0 0 22 5.2 2.4 5.0 4.5 4.3 4.3 0 0 0 0 0 0 0 0 0 1 0 23 5.2 2.4 5.2 5.0 4.5 4.3 0 0 0 0 0 0 0 0 0 0 1 24 5.4 2.1 5.2 5.2 5.0 4.5 0 0 0 0 0 0 0 0 0 0 0 25 5.5 2.0 5.4 5.2 5.2 5.0 1 0 0 0 0 0 0 0 0 0 0 26 5.4 2.0 5.5 5.4 5.2 5.2 0 1 0 0 0 0 0 0 0 0 0 27 5.5 2.1 5.4 5.5 5.4 5.2 0 0 1 0 0 0 0 0 0 0 0 28 5.4 2.1 5.5 5.4 5.5 5.4 0 0 0 1 0 0 0 0 0 0 0 29 5.7 2.0 5.4 5.5 5.4 5.5 0 0 0 0 1 0 0 0 0 0 0 30 5.7 2.0 5.7 5.4 5.5 5.4 0 0 0 0 0 1 0 0 0 0 0 31 6.1 2.0 5.7 5.7 5.4 5.5 0 0 0 0 0 0 1 0 0 0 0 32 6.5 1.7 6.1 5.7 5.7 5.4 0 0 0 0 0 0 0 1 0 0 0 33 6.9 1.3 6.5 6.1 5.7 5.7 0 0 0 0 0 0 0 0 1 0 0 34 6.8 1.2 6.9 6.5 6.1 5.7 0 0 0 0 0 0 0 0 0 1 0 35 6.7 1.1 6.8 6.9 6.5 6.1 0 0 0 0 0 0 0 0 0 0 1 36 6.6 1.4 6.7 6.8 6.9 6.5 0 0 0 0 0 0 0 0 0 0 0 37 6.5 1.5 6.6 6.7 6.8 6.9 1 0 0 0 0 0 0 0 0 0 0 38 6.4 1.4 6.5 6.6 6.7 6.8 0 1 0 0 0 0 0 0 0 0 0 39 6.1 1.1 6.4 6.5 6.6 6.7 0 0 1 0 0 0 0 0 0 0 0 40 6.2 1.1 6.1 6.4 6.5 6.6 0 0 0 1 0 0 0 0 0 0 0 41 6.3 1.0 6.2 6.1 6.4 6.5 0 0 0 0 1 0 0 0 0 0 0 42 6.4 1.4 6.3 6.2 6.1 6.4 0 0 0 0 0 1 0 0 0 0 0 43 6.5 1.3 6.4 6.3 6.2 6.1 0 0 0 0 0 0 1 0 0 0 0 44 6.7 1.2 6.5 6.4 6.3 6.2 0 0 0 0 0 0 0 1 0 0 0 45 7.0 1.5 6.7 6.5 6.4 6.3 0 0 0 0 0 0 0 0 1 0 0 46 7.0 1.6 7.0 6.7 6.5 6.4 0 0 0 0 0 0 0 0 0 1 0 47 6.8 1.8 7.0 7.0 6.7 6.5 0 0 0 0 0 0 0 0 0 0 1 48 6.7 1.5 6.8 7.0 7.0 6.7 0 0 0 0 0 0 0 0 0 0 0 49 6.7 1.3 6.7 6.8 7.0 7.0 1 0 0 0 0 0 0 0 0 0 0 50 6.5 1.6 6.7 6.7 6.8 7.0 0 1 0 0 0 0 0 0 0 0 0 51 6.4 1.6 6.5 6.7 6.7 6.8 0 0 1 0 0 0 0 0 0 0 0 52 6.1 1.8 6.4 6.5 6.7 6.7 0 0 0 1 0 0 0 0 0 0 0 53 6.2 1.8 6.1 6.4 6.5 6.7 0 0 0 0 1 0 0 0 0 0 0 54 6.0 1.6 6.2 6.1 6.4 6.5 0 0 0 0 0 1 0 0 0 0 0 55 6.1 1.8 6.0 6.2 6.1 6.4 0 0 0 0 0 0 1 0 0 0 0 56 6.1 2.0 6.1 6.0 6.2 6.1 0 0 0 0 0 0 0 1 0 0 0 > k <- length(x[1,]) > df <- as.data.frame(x) > (mylm <- lm(df)) Call: lm(formula = df) Coefficients: (Intercept) Infl `M1(t)` `M2(t)` `M3(t)` `M4(t)` 1.4298201 -0.1611938 0.9298717 0.2740126 -0.6248358 0.2514873 M1 M2 M3 M4 M5 M6 0.0239057 -0.2252263 -0.2208921 -0.2302378 -0.0002049 -0.1491274 M7 M8 M9 M10 M11 -0.1045034 0.1134800 0.1205270 -0.1509030 -0.3132241 > (mysum <- summary(mylm)) Call: lm(formula = df) Residuals: Min 1Q Median 3Q Max -0.224924 -0.074302 -0.007436 0.061575 0.225864 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 1.4298201 0.3777073 3.786 0.000517 *** Infl -0.1611938 0.0505311 -3.190 0.002807 ** `M1(t)` 0.9298717 0.1550546 5.997 5.23e-07 *** `M2(t)` 0.2740126 0.1986558 1.379 0.175651 `M3(t)` -0.6248358 0.1994015 -3.134 0.003273 ** `M4(t)` 0.2514873 0.1320884 1.904 0.064316 . M1 0.0239057 0.1018027 0.235 0.815574 M2 -0.2252263 0.1175819 -1.915 0.062784 . M3 -0.2208921 0.0938643 -2.353 0.023743 * M4 -0.2302378 0.0876979 -2.625 0.012300 * M5 -0.0002049 0.0940748 -0.002 0.998273 M6 -0.1491274 0.1115414 -1.337 0.188979 M7 -0.1045034 0.1082883 -0.965 0.340467 M8 0.1134800 0.0966368 1.174 0.247398 M9 0.1205270 0.1181675 1.020 0.314029 M10 -0.1509030 0.1209533 -1.248 0.219612 M11 -0.3132241 0.0976836 -3.207 0.002683 ** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 0.1169 on 39 degrees of freedom Multiple R-squared: 0.9936, Adjusted R-squared: 0.991 F-statistic: 379.9 on 16 and 39 DF, p-value: < 2.2e-16 > if (n > n25) { + kp3 <- k + 3 + nmkm3 <- n - k - 3 + gqarr <- array(NA, dim=c(nmkm3-kp3+1,3)) + numgqtests <- 0 + numsignificant1 <- 0 + numsignificant5 <- 0 + numsignificant10 <- 0 + for (mypoint in kp3:nmkm3) { + j <- 0 + numgqtests <- numgqtests + 1 + for (myalt in c('greater', 'two.sided', 'less')) { + j <- j + 1 + gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value + } + if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1 + if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1 + if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1 + } + gqarr + } [,1] [,2] [,3] [1,] 0.4446095 0.8892190 0.5553905 [2,] 0.3313637 0.6627273 0.6686363 [3,] 0.2198023 0.4396047 0.7801977 [4,] 0.3961476 0.7922951 0.6038524 [5,] 0.3378926 0.6757851 0.6621074 [6,] 0.2868419 0.5736837 0.7131581 [7,] 0.2785150 0.5570300 0.7214850 [8,] 0.3036921 0.6073842 0.6963079 [9,] 0.2323246 0.4646493 0.7676754 [10,] 0.1576373 0.3152745 0.8423627 [11,] 0.1131047 0.2262094 0.8868953 [12,] 0.3482883 0.6965766 0.6517117 [13,] 0.7082705 0.5834590 0.2917295 [14,] 0.5947402 0.8105196 0.4052598 [15,] 0.5478277 0.9043447 0.4521723 [16,] 0.4983669 0.9967338 0.5016331 [17,] 0.3693628 0.7387256 0.6306372 > postscript(file="/var/www/html/rcomp/tmp/1cgar1260103638.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index') > points(x[,1]-mysum$resid) > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/2nt3d1260103638.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index') > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/3869a1260103638.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals') > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/4u5721260103638.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals') > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/5hee11260103638.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > qqnorm(mysum$resid, main='Residual Normal Q-Q Plot') > qqline(mysum$resid) > grid() > dev.off() null device 1 > (myerror <- as.ts(mysum$resid)) Time Series: Start = 1 End = 56 Frequency = 1 1 2 3 4 5 6 0.124901433 0.038978279 0.108923592 -0.108482700 -0.037252789 0.098892430 7 8 9 10 11 12 -0.101851688 0.057346217 -0.145689766 -0.012193005 -0.167598360 0.020258750 13 14 15 16 17 18 0.156410492 0.075298390 -0.096800536 -0.028236370 0.011640146 -0.033923616 19 20 21 22 23 24 -0.159403129 -0.089754269 0.079240034 0.030931734 -0.004760646 0.040975028 25 26 27 28 29 30 -0.085800844 -0.134755992 0.167582291 0.023528119 0.055329470 0.040324087 31 32 33 34 35 36 0.225863988 0.200173200 -0.028351171 -0.104659891 0.074263349 -0.020874801 37 38 39 40 41 42 -0.171351163 0.044715015 -0.224923706 0.153449814 -0.040820689 -0.010111041 43 44 45 46 47 48 0.046686886 -0.070469508 0.094800902 0.085921162 0.098095657 -0.040358977 49 50 51 52 53 54 -0.024159917 -0.024235693 0.045218359 -0.040258863 0.011103861 -0.095181860 55 56 -0.011296057 -0.097295640 > postscript(file="/var/www/html/rcomp/tmp/639x21260103638.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > dum <- cbind(lag(myerror,k=1),myerror) > dum Time Series: Start = 0 End = 56 Frequency = 1 lag(myerror, k = 1) myerror 0 0.124901433 NA 1 0.038978279 0.124901433 2 0.108923592 0.038978279 3 -0.108482700 0.108923592 4 -0.037252789 -0.108482700 5 0.098892430 -0.037252789 6 -0.101851688 0.098892430 7 0.057346217 -0.101851688 8 -0.145689766 0.057346217 9 -0.012193005 -0.145689766 10 -0.167598360 -0.012193005 11 0.020258750 -0.167598360 12 0.156410492 0.020258750 13 0.075298390 0.156410492 14 -0.096800536 0.075298390 15 -0.028236370 -0.096800536 16 0.011640146 -0.028236370 17 -0.033923616 0.011640146 18 -0.159403129 -0.033923616 19 -0.089754269 -0.159403129 20 0.079240034 -0.089754269 21 0.030931734 0.079240034 22 -0.004760646 0.030931734 23 0.040975028 -0.004760646 24 -0.085800844 0.040975028 25 -0.134755992 -0.085800844 26 0.167582291 -0.134755992 27 0.023528119 0.167582291 28 0.055329470 0.023528119 29 0.040324087 0.055329470 30 0.225863988 0.040324087 31 0.200173200 0.225863988 32 -0.028351171 0.200173200 33 -0.104659891 -0.028351171 34 0.074263349 -0.104659891 35 -0.020874801 0.074263349 36 -0.171351163 -0.020874801 37 0.044715015 -0.171351163 38 -0.224923706 0.044715015 39 0.153449814 -0.224923706 40 -0.040820689 0.153449814 41 -0.010111041 -0.040820689 42 0.046686886 -0.010111041 43 -0.070469508 0.046686886 44 0.094800902 -0.070469508 45 0.085921162 0.094800902 46 0.098095657 0.085921162 47 -0.040358977 0.098095657 48 -0.024159917 -0.040358977 49 -0.024235693 -0.024159917 50 0.045218359 -0.024235693 51 -0.040258863 0.045218359 52 0.011103861 -0.040258863 53 -0.095181860 0.011103861 54 -0.011296057 -0.095181860 55 -0.097295640 -0.011296057 56 NA -0.097295640 > dum1 <- dum[2:length(myerror),] > dum1 lag(myerror, k = 1) myerror [1,] 0.038978279 0.124901433 [2,] 0.108923592 0.038978279 [3,] -0.108482700 0.108923592 [4,] -0.037252789 -0.108482700 [5,] 0.098892430 -0.037252789 [6,] -0.101851688 0.098892430 [7,] 0.057346217 -0.101851688 [8,] -0.145689766 0.057346217 [9,] -0.012193005 -0.145689766 [10,] -0.167598360 -0.012193005 [11,] 0.020258750 -0.167598360 [12,] 0.156410492 0.020258750 [13,] 0.075298390 0.156410492 [14,] -0.096800536 0.075298390 [15,] -0.028236370 -0.096800536 [16,] 0.011640146 -0.028236370 [17,] -0.033923616 0.011640146 [18,] -0.159403129 -0.033923616 [19,] -0.089754269 -0.159403129 [20,] 0.079240034 -0.089754269 [21,] 0.030931734 0.079240034 [22,] -0.004760646 0.030931734 [23,] 0.040975028 -0.004760646 [24,] -0.085800844 0.040975028 [25,] -0.134755992 -0.085800844 [26,] 0.167582291 -0.134755992 [27,] 0.023528119 0.167582291 [28,] 0.055329470 0.023528119 [29,] 0.040324087 0.055329470 [30,] 0.225863988 0.040324087 [31,] 0.200173200 0.225863988 [32,] -0.028351171 0.200173200 [33,] -0.104659891 -0.028351171 [34,] 0.074263349 -0.104659891 [35,] -0.020874801 0.074263349 [36,] -0.171351163 -0.020874801 [37,] 0.044715015 -0.171351163 [38,] -0.224923706 0.044715015 [39,] 0.153449814 -0.224923706 [40,] -0.040820689 0.153449814 [41,] -0.010111041 -0.040820689 [42,] 0.046686886 -0.010111041 [43,] -0.070469508 0.046686886 [44,] 0.094800902 -0.070469508 [45,] 0.085921162 0.094800902 [46,] 0.098095657 0.085921162 [47,] -0.040358977 0.098095657 [48,] -0.024159917 -0.040358977 [49,] -0.024235693 -0.024159917 [50,] 0.045218359 -0.024235693 [51,] -0.040258863 0.045218359 [52,] 0.011103861 -0.040258863 [53,] -0.095181860 0.011103861 [54,] -0.011296057 -0.095181860 [55,] -0.097295640 -0.011296057 > z <- as.data.frame(dum1) > z lag(myerror, k = 1) myerror 1 0.038978279 0.124901433 2 0.108923592 0.038978279 3 -0.108482700 0.108923592 4 -0.037252789 -0.108482700 5 0.098892430 -0.037252789 6 -0.101851688 0.098892430 7 0.057346217 -0.101851688 8 -0.145689766 0.057346217 9 -0.012193005 -0.145689766 10 -0.167598360 -0.012193005 11 0.020258750 -0.167598360 12 0.156410492 0.020258750 13 0.075298390 0.156410492 14 -0.096800536 0.075298390 15 -0.028236370 -0.096800536 16 0.011640146 -0.028236370 17 -0.033923616 0.011640146 18 -0.159403129 -0.033923616 19 -0.089754269 -0.159403129 20 0.079240034 -0.089754269 21 0.030931734 0.079240034 22 -0.004760646 0.030931734 23 0.040975028 -0.004760646 24 -0.085800844 0.040975028 25 -0.134755992 -0.085800844 26 0.167582291 -0.134755992 27 0.023528119 0.167582291 28 0.055329470 0.023528119 29 0.040324087 0.055329470 30 0.225863988 0.040324087 31 0.200173200 0.225863988 32 -0.028351171 0.200173200 33 -0.104659891 -0.028351171 34 0.074263349 -0.104659891 35 -0.020874801 0.074263349 36 -0.171351163 -0.020874801 37 0.044715015 -0.171351163 38 -0.224923706 0.044715015 39 0.153449814 -0.224923706 40 -0.040820689 0.153449814 41 -0.010111041 -0.040820689 42 0.046686886 -0.010111041 43 -0.070469508 0.046686886 44 0.094800902 -0.070469508 45 0.085921162 0.094800902 46 0.098095657 0.085921162 47 -0.040358977 0.098095657 48 -0.024159917 -0.040358977 49 -0.024235693 -0.024159917 50 0.045218359 -0.024235693 51 -0.040258863 0.045218359 52 0.011103861 -0.040258863 53 -0.095181860 0.011103861 54 -0.011296057 -0.095181860 55 -0.097295640 -0.011296057 > plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals') > lines(lowess(z)) > abline(lm(z)) > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/7ijqp1260103638.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function') > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/8e73c1260103638.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function') > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/9c6it1260103638.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0)) > plot(mylm, las = 1, sub='Residual Diagnostics') > par(opar) > dev.off() null device 1 > if (n > n25) { + postscript(file="/var/www/html/rcomp/tmp/10ciwf1260103638.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) + plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint') + grid() + dev.off() + } null device 1 > > #Note: the /var/www/html/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/www/html/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE) > a<-table.row.end(a) > myeq <- colnames(x)[1] > myeq <- paste(myeq, '[t] = ', sep='') > for (i in 1:k){ + if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '') + myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ') + if (rownames(mysum$coefficients)[i] != '(Intercept)') { + myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='') + if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='') + } + } > myeq <- paste(myeq, ' + e[t]') > a<-table.row.start(a) > a<-table.element(a, myeq) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/11bl4q1260103638.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Variable',header=TRUE) > a<-table.element(a,'Parameter',header=TRUE) > a<-table.element(a,'S.D.',header=TRUE) > a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE) > a<-table.element(a,'2-tail p-value',header=TRUE) > a<-table.element(a,'1-tail p-value',header=TRUE) > a<-table.row.end(a) > for (i in 1:k){ + a<-table.row.start(a) + a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE) + a<-table.element(a,mysum$coefficients[i,1]) + a<-table.element(a, round(mysum$coefficients[i,2],6)) + a<-table.element(a, round(mysum$coefficients[i,3],4)) + a<-table.element(a, round(mysum$coefficients[i,4],6)) + a<-table.element(a, round(mysum$coefficients[i,4]/2,6)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/12vtc61260103638.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Multiple R',1,TRUE) > a<-table.element(a, sqrt(mysum$r.squared)) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'R-squared',1,TRUE) > a<-table.element(a, mysum$r.squared) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Adjusted R-squared',1,TRUE) > a<-table.element(a, mysum$adj.r.squared) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (value)',1,TRUE) > a<-table.element(a, mysum$fstatistic[1]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE) > a<-table.element(a, mysum$fstatistic[2]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE) > a<-table.element(a, mysum$fstatistic[3]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'p-value',1,TRUE) > a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3])) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Residual Standard Deviation',1,TRUE) > a<-table.element(a, mysum$sigma) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Sum Squared Residuals',1,TRUE) > a<-table.element(a, sum(myerror*myerror)) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/138dh41260103639.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Time or Index', 1, TRUE) > a<-table.element(a, 'Actuals', 1, TRUE) > a<-table.element(a, 'Interpolation
Forecast', 1, TRUE) > a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE) > a<-table.row.end(a) > for (i in 1:n) { + a<-table.row.start(a) + a<-table.element(a,i, 1, TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,x[i]-mysum$resid[i]) + a<-table.element(a,mysum$resid[i]) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/14pvlb1260103639.tab") > if (n > n25) { + a<-table.start() + a<-table.row.start(a) + a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'p-values',header=TRUE) + a<-table.element(a,'Alternative Hypothesis',3,header=TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'breakpoint index',header=TRUE) + a<-table.element(a,'greater',header=TRUE) + a<-table.element(a,'2-sided',header=TRUE) + a<-table.element(a,'less',header=TRUE) + a<-table.row.end(a) + for (mypoint in kp3:nmkm3) { + a<-table.row.start(a) + a<-table.element(a,mypoint,header=TRUE) + a<-table.element(a,gqarr[mypoint-kp3+1,1]) + a<-table.element(a,gqarr[mypoint-kp3+1,2]) + a<-table.element(a,gqarr[mypoint-kp3+1,3]) + a<-table.row.end(a) + } + a<-table.end(a) + table.save(a,file="/var/www/html/rcomp/tmp/15ho8k1260103639.tab") + a<-table.start() + a<-table.row.start(a) + a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'Description',header=TRUE) + a<-table.element(a,'# significant tests',header=TRUE) + a<-table.element(a,'% significant tests',header=TRUE) + a<-table.element(a,'OK/NOK',header=TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'1% type I error level',header=TRUE) + a<-table.element(a,numsignificant1) + a<-table.element(a,numsignificant1/numgqtests) + if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK' + a<-table.element(a,dum) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'5% type I error level',header=TRUE) + a<-table.element(a,numsignificant5) + a<-table.element(a,numsignificant5/numgqtests) + if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK' + a<-table.element(a,dum) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'10% type I error level',header=TRUE) + a<-table.element(a,numsignificant10) + a<-table.element(a,numsignificant10/numgqtests) + if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK' + a<-table.element(a,dum) + a<-table.row.end(a) + a<-table.end(a) + table.save(a,file="/var/www/html/rcomp/tmp/16j8jb1260103639.tab") + } > > system("convert tmp/1cgar1260103638.ps tmp/1cgar1260103638.png") > system("convert tmp/2nt3d1260103638.ps tmp/2nt3d1260103638.png") > system("convert tmp/3869a1260103638.ps tmp/3869a1260103638.png") > system("convert tmp/4u5721260103638.ps tmp/4u5721260103638.png") > system("convert tmp/5hee11260103638.ps tmp/5hee11260103638.png") > system("convert tmp/639x21260103638.ps tmp/639x21260103638.png") > system("convert tmp/7ijqp1260103638.ps tmp/7ijqp1260103638.png") > system("convert tmp/8e73c1260103638.ps tmp/8e73c1260103638.png") > system("convert tmp/9c6it1260103638.ps tmp/9c6it1260103638.png") > system("convert tmp/10ciwf1260103638.ps tmp/10ciwf1260103638.png") > > > proc.time() user system elapsed 2.345 1.536 11.329