R version 2.9.0 (2009-04-17) Copyright (C) 2009 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- array(list(3.6,4.5,3.9,3.3,4.6,3.6,3.2,4.9,3.3,3.4,4.9,3.2,3.4,4.5,3.4,3.5,4.6,3.4,3.2,4.7,3.5,3.3,4.7,3.2,3.3,4.3,3.3,3.4,4.2,3.3,3.7,4.4,3.4,3.9,4,3.7,4,3.8,3.9,3.7,3.6,4,3.9,3.6,3.7,4.2,3.3,3.9,4.4,3.4,4.2,4.3,3.4,4.4,4.2,3.3,4.3,4.3,3.3,4.2,4.3,3.2,4.3,4.3,3.1,4.3,4.5,3.1,4.3,5,2.4,4.5,5.2,2.4,5,5.2,2.4,5.2,5.4,2.1,5.2,5.5,2,5.4,5.4,2,5.5,5.5,2.1,5.4,5.4,2.1,5.5,5.7,2,5.4,5.7,2,5.7,6.1,2,5.7,6.5,1.7,6.1,6.9,1.3,6.5,6.8,1.2,6.9,6.7,1.1,6.8,6.6,1.4,6.7,6.5,1.5,6.6,6.4,1.4,6.5,6.1,1.1,6.4,6.2,1.1,6.1,6.3,1,6.2,6.4,1.4,6.3,6.5,1.3,6.4,6.7,1.2,6.5,7,1.5,6.7,7,1.6,7,6.8,1.8,7,6.7,1.5,6.8,6.7,1.3,6.7,6.5,1.6,6.7,6.4,1.6,6.5,6.1,1.8,6.4,6.2,1.8,6.1,6,1.6,6.2,6.1,1.8,6,6.1,2,6.1),dim=c(3,59),dimnames=list(c('Werkl','Infl','M1(t)'),1:59)) > y <- array(NA,dim=c(3,59),dimnames=list(c('Werkl','Infl','M1(t)'),1:59)) > for (i in 1:dim(x)[1]) + { + for (j in 1:dim(x)[2]) + { + y[i,j] <- as.numeric(x[i,j]) + } + } > par3 = 'Linear Trend' > par2 = 'Include Monthly Dummies' > par1 = '1' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: AUTHOR(S), (YEAR), YOUR SOFTWARE TITLE (vNUMBER) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_YOURPAGE.wasp/ > #Source of accompanying publication: Office for Research, Development, and Education > #Technical description: Write here your technical program description (don't use hard returns!) > library(lattice) > library(lmtest) Loading required package: zoo Attaching package: 'zoo' The following object(s) are masked from package:base : as.Date.numeric > n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test > par1 <- as.numeric(par1) > x <- t(y) > k <- length(x[1,]) > n <- length(x[,1]) > x1 <- cbind(x[,par1], x[,1:k!=par1]) > mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1]) > colnames(x1) <- mycolnames #colnames(x)[par1] > x <- x1 > if (par3 == 'First Differences'){ + x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep=''))) + for (i in 1:n-1) { + for (j in 1:k) { + x2[i,j] <- x[i+1,j] - x[i,j] + } + } + x <- x2 + } > if (par2 == 'Include Monthly Dummies'){ + x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep =''))) + for (i in 1:11){ + x2[seq(i,n,12),i] <- 1 + } + x <- cbind(x, x2) + } > if (par2 == 'Include Quarterly Dummies'){ + x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep =''))) + for (i in 1:3){ + x2[seq(i,n,4),i] <- 1 + } + x <- cbind(x, x2) + } > k <- length(x[1,]) > if (par3 == 'Linear Trend'){ + x <- cbind(x, c(1:n)) + colnames(x)[k+1] <- 't' + } > x Werkl Infl M1(t) M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 t 1 3.6 4.5 3.9 1 0 0 0 0 0 0 0 0 0 0 1 2 3.3 4.6 3.6 0 1 0 0 0 0 0 0 0 0 0 2 3 3.2 4.9 3.3 0 0 1 0 0 0 0 0 0 0 0 3 4 3.4 4.9 3.2 0 0 0 1 0 0 0 0 0 0 0 4 5 3.4 4.5 3.4 0 0 0 0 1 0 0 0 0 0 0 5 6 3.5 4.6 3.4 0 0 0 0 0 1 0 0 0 0 0 6 7 3.2 4.7 3.5 0 0 0 0 0 0 1 0 0 0 0 7 8 3.3 4.7 3.2 0 0 0 0 0 0 0 1 0 0 0 8 9 3.3 4.3 3.3 0 0 0 0 0 0 0 0 1 0 0 9 10 3.4 4.2 3.3 0 0 0 0 0 0 0 0 0 1 0 10 11 3.7 4.4 3.4 0 0 0 0 0 0 0 0 0 0 1 11 12 3.9 4.0 3.7 0 0 0 0 0 0 0 0 0 0 0 12 13 4.0 3.8 3.9 1 0 0 0 0 0 0 0 0 0 0 13 14 3.7 3.6 4.0 0 1 0 0 0 0 0 0 0 0 0 14 15 3.9 3.6 3.7 0 0 1 0 0 0 0 0 0 0 0 15 16 4.2 3.3 3.9 0 0 0 1 0 0 0 0 0 0 0 16 17 4.4 3.4 4.2 0 0 0 0 1 0 0 0 0 0 0 17 18 4.3 3.4 4.4 0 0 0 0 0 1 0 0 0 0 0 18 19 4.2 3.3 4.3 0 0 0 0 0 0 1 0 0 0 0 19 20 4.3 3.3 4.2 0 0 0 0 0 0 0 1 0 0 0 20 21 4.3 3.2 4.3 0 0 0 0 0 0 0 0 1 0 0 21 22 4.3 3.1 4.3 0 0 0 0 0 0 0 0 0 1 0 22 23 4.5 3.1 4.3 0 0 0 0 0 0 0 0 0 0 1 23 24 5.0 2.4 4.5 0 0 0 0 0 0 0 0 0 0 0 24 25 5.2 2.4 5.0 1 0 0 0 0 0 0 0 0 0 0 25 26 5.2 2.4 5.2 0 1 0 0 0 0 0 0 0 0 0 26 27 5.4 2.1 5.2 0 0 1 0 0 0 0 0 0 0 0 27 28 5.5 2.0 5.4 0 0 0 1 0 0 0 0 0 0 0 28 29 5.4 2.0 5.5 0 0 0 0 1 0 0 0 0 0 0 29 30 5.5 2.1 5.4 0 0 0 0 0 1 0 0 0 0 0 30 31 5.4 2.1 5.5 0 0 0 0 0 0 1 0 0 0 0 31 32 5.7 2.0 5.4 0 0 0 0 0 0 0 1 0 0 0 32 33 5.7 2.0 5.7 0 0 0 0 0 0 0 0 1 0 0 33 34 6.1 2.0 5.7 0 0 0 0 0 0 0 0 0 1 0 34 35 6.5 1.7 6.1 0 0 0 0 0 0 0 0 0 0 1 35 36 6.9 1.3 6.5 0 0 0 0 0 0 0 0 0 0 0 36 37 6.8 1.2 6.9 1 0 0 0 0 0 0 0 0 0 0 37 38 6.7 1.1 6.8 0 1 0 0 0 0 0 0 0 0 0 38 39 6.6 1.4 6.7 0 0 1 0 0 0 0 0 0 0 0 39 40 6.5 1.5 6.6 0 0 0 1 0 0 0 0 0 0 0 40 41 6.4 1.4 6.5 0 0 0 0 1 0 0 0 0 0 0 41 42 6.1 1.1 6.4 0 0 0 0 0 1 0 0 0 0 0 42 43 6.2 1.1 6.1 0 0 0 0 0 0 1 0 0 0 0 43 44 6.3 1.0 6.2 0 0 0 0 0 0 0 1 0 0 0 44 45 6.4 1.4 6.3 0 0 0 0 0 0 0 0 1 0 0 45 46 6.5 1.3 6.4 0 0 0 0 0 0 0 0 0 1 0 46 47 6.7 1.2 6.5 0 0 0 0 0 0 0 0 0 0 1 47 48 7.0 1.5 6.7 0 0 0 0 0 0 0 0 0 0 0 48 49 7.0 1.6 7.0 1 0 0 0 0 0 0 0 0 0 0 49 50 6.8 1.8 7.0 0 1 0 0 0 0 0 0 0 0 0 50 51 6.7 1.5 6.8 0 0 1 0 0 0 0 0 0 0 0 51 52 6.7 1.3 6.7 0 0 0 1 0 0 0 0 0 0 0 52 53 6.5 1.6 6.7 0 0 0 0 1 0 0 0 0 0 0 53 54 6.4 1.6 6.5 0 0 0 0 0 1 0 0 0 0 0 54 55 6.1 1.8 6.4 0 0 0 0 0 0 1 0 0 0 0 55 56 6.2 1.8 6.1 0 0 0 0 0 0 0 1 0 0 0 56 57 6.0 1.6 6.2 0 0 0 0 0 0 0 0 1 0 0 57 58 6.1 1.8 6.0 0 0 0 0 0 0 0 0 0 1 0 58 59 6.1 2.0 6.1 0 0 0 0 0 0 0 0 0 0 1 59 > k <- length(x[1,]) > df <- as.data.frame(x) > (mylm <- lm(df)) Call: lm(formula = df) Coefficients: (Intercept) Infl `M1(t)` M1 M2 M3 1.815902 -0.200998 0.824986 -0.302564 -0.463822 -0.293082 M4 M5 M6 M7 M8 M9 -0.227439 -0.351715 -0.380492 -0.460711 -0.211010 -0.356325 M10 M11 t -0.201603 -0.094858 -0.002243 > (mysum <- summary(mylm)) Call: lm(formula = df) Residuals: Min 1Q Median 3Q Max -0.300028 -0.079979 0.002446 0.082515 0.261529 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 1.815902 0.416745 4.357 7.78e-05 *** Infl -0.200998 0.052076 -3.860 0.000368 *** `M1(t)` 0.824986 0.066791 12.352 6.74e-16 *** M1 -0.302564 0.091674 -3.300 0.001920 ** M2 -0.463822 0.090772 -5.110 6.71e-06 *** M3 -0.293082 0.088408 -3.315 0.001841 ** M4 -0.227439 0.087970 -2.585 0.013117 * M5 -0.351715 0.088296 -3.983 0.000252 *** M6 -0.380492 0.088137 -4.317 8.84e-05 *** M7 -0.460711 0.088588 -5.201 4.96e-06 *** M8 -0.211010 0.090105 -2.342 0.023781 * M9 -0.356325 0.089442 -3.984 0.000251 *** M10 -0.201603 0.090357 -2.231 0.030813 * M11 -0.094858 0.089853 -1.056 0.296865 t -0.002243 0.003246 -0.691 0.493251 --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 0.1307 on 44 degrees of freedom Multiple R-squared: 0.9921, Adjusted R-squared: 0.9895 F-statistic: 393.2 on 14 and 44 DF, p-value: < 2.2e-16 > if (n > n25) { + kp3 <- k + 3 + nmkm3 <- n - k - 3 + gqarr <- array(NA, dim=c(nmkm3-kp3+1,3)) + numgqtests <- 0 + numsignificant1 <- 0 + numsignificant5 <- 0 + numsignificant10 <- 0 + for (mypoint in kp3:nmkm3) { + j <- 0 + numgqtests <- numgqtests + 1 + for (myalt in c('greater', 'two.sided', 'less')) { + j <- j + 1 + gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value + } + if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1 + if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1 + if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1 + } + gqarr + } [,1] [,2] [,3] [1,] 0.6291857 0.7416286 0.3708143 [2,] 0.5515172 0.8969657 0.4484828 [3,] 0.4067373 0.8134747 0.5932627 [4,] 0.2876663 0.5753327 0.7123337 [5,] 0.3007713 0.6015427 0.6992287 [6,] 0.3006061 0.6012122 0.6993939 [7,] 0.3088354 0.6176708 0.6911646 [8,] 0.3303544 0.6607087 0.6696456 [9,] 0.4784510 0.9569019 0.5215490 [10,] 0.4226388 0.8452776 0.5773612 [11,] 0.3696265 0.7392530 0.6303735 [12,] 0.3878880 0.7757759 0.6121120 [13,] 0.3253104 0.6506208 0.6746896 [14,] 0.3029502 0.6059004 0.6970498 [15,] 0.2918184 0.5836369 0.7081816 [16,] 0.2592961 0.5185923 0.7407039 [17,] 0.4003671 0.8007343 0.5996329 [18,] 0.4789092 0.9578185 0.5210908 [19,] 0.3758214 0.7516429 0.6241786 [20,] 0.3672466 0.7344933 0.6327534 [21,] 0.2615337 0.5230674 0.7384663 [22,] 0.2084990 0.4169980 0.7915010 [23,] 0.1876072 0.3752145 0.8123928 [24,] 0.1062310 0.2124620 0.8937690 > postscript(file="/var/www/html/rcomp/tmp/1jt0x1260104796.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index') > points(x[,1]-mysum$resid) > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/2ewz41260104796.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index') > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/3hnph1260104796.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals') > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/4w2wj1260104796.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals') > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/5rteb1260104796.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > qqnorm(mysum$resid, main='Residual Normal Q-Q Plot') > qqline(mysum$resid) > grid() > dev.off() null device 1 > (myerror <- as.ts(mysum$resid)) Time Series: Start = 1 End = 59 Frequency = 1 1 2 3 4 5 -0.2240484785 -0.0929526421 -0.0536549192 0.1654431869 0.0465653336 6 7 8 9 10 0.1976856711 -0.0822521741 0.0177854795 0.0024455636 -0.0701339994 11 12 13 14 15 0.0830650499 -0.1374451153 0.0621651638 -0.1970327506 0.0819655471 16 17 18 19 20 0.0932684837 0.1923910909 -0.0415855428 0.0032741580 -0.0616853512 21 22 23 24 25 -0.0167258420 -0.1893054050 -0.0938073910 0.0078816000 0.1001957517 26 27 28 29 30 0.0986988726 0.0699020008 -0.0785954458 -0.1345754841 0.0990434348 31 32 33 34 35 -0.0009942188 0.1139464636 0.0140086183 0.2615288637 0.1667331269 36 37 38 39 40 0.0637243802 -0.0815626951 0.0443363617 -0.0813630783 -0.1421651638 41 42 43 44 45 -0.0532478477 -0.3000281623 0.1299285098 -0.1201279707 0.1253305804 46 47 48 49 50 -0.0297475640 -0.0368479398 0.0658391351 0.1432502580 0.1469501585 51 52 53 54 55 -0.0168495504 -0.0379510610 -0.0511330928 0.0448845992 -0.0499562748 56 57 58 59 0.0500813788 -0.1250589204 0.0276581047 -0.1191428460 > postscript(file="/var/www/html/rcomp/tmp/6jlng1260104796.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > dum <- cbind(lag(myerror,k=1),myerror) > dum Time Series: Start = 0 End = 59 Frequency = 1 lag(myerror, k = 1) myerror 0 -0.2240484785 NA 1 -0.0929526421 -0.2240484785 2 -0.0536549192 -0.0929526421 3 0.1654431869 -0.0536549192 4 0.0465653336 0.1654431869 5 0.1976856711 0.0465653336 6 -0.0822521741 0.1976856711 7 0.0177854795 -0.0822521741 8 0.0024455636 0.0177854795 9 -0.0701339994 0.0024455636 10 0.0830650499 -0.0701339994 11 -0.1374451153 0.0830650499 12 0.0621651638 -0.1374451153 13 -0.1970327506 0.0621651638 14 0.0819655471 -0.1970327506 15 0.0932684837 0.0819655471 16 0.1923910909 0.0932684837 17 -0.0415855428 0.1923910909 18 0.0032741580 -0.0415855428 19 -0.0616853512 0.0032741580 20 -0.0167258420 -0.0616853512 21 -0.1893054050 -0.0167258420 22 -0.0938073910 -0.1893054050 23 0.0078816000 -0.0938073910 24 0.1001957517 0.0078816000 25 0.0986988726 0.1001957517 26 0.0699020008 0.0986988726 27 -0.0785954458 0.0699020008 28 -0.1345754841 -0.0785954458 29 0.0990434348 -0.1345754841 30 -0.0009942188 0.0990434348 31 0.1139464636 -0.0009942188 32 0.0140086183 0.1139464636 33 0.2615288637 0.0140086183 34 0.1667331269 0.2615288637 35 0.0637243802 0.1667331269 36 -0.0815626951 0.0637243802 37 0.0443363617 -0.0815626951 38 -0.0813630783 0.0443363617 39 -0.1421651638 -0.0813630783 40 -0.0532478477 -0.1421651638 41 -0.3000281623 -0.0532478477 42 0.1299285098 -0.3000281623 43 -0.1201279707 0.1299285098 44 0.1253305804 -0.1201279707 45 -0.0297475640 0.1253305804 46 -0.0368479398 -0.0297475640 47 0.0658391351 -0.0368479398 48 0.1432502580 0.0658391351 49 0.1469501585 0.1432502580 50 -0.0168495504 0.1469501585 51 -0.0379510610 -0.0168495504 52 -0.0511330928 -0.0379510610 53 0.0448845992 -0.0511330928 54 -0.0499562748 0.0448845992 55 0.0500813788 -0.0499562748 56 -0.1250589204 0.0500813788 57 0.0276581047 -0.1250589204 58 -0.1191428460 0.0276581047 59 NA -0.1191428460 > dum1 <- dum[2:length(myerror),] > dum1 lag(myerror, k = 1) myerror [1,] -0.0929526421 -0.2240484785 [2,] -0.0536549192 -0.0929526421 [3,] 0.1654431869 -0.0536549192 [4,] 0.0465653336 0.1654431869 [5,] 0.1976856711 0.0465653336 [6,] -0.0822521741 0.1976856711 [7,] 0.0177854795 -0.0822521741 [8,] 0.0024455636 0.0177854795 [9,] -0.0701339994 0.0024455636 [10,] 0.0830650499 -0.0701339994 [11,] -0.1374451153 0.0830650499 [12,] 0.0621651638 -0.1374451153 [13,] -0.1970327506 0.0621651638 [14,] 0.0819655471 -0.1970327506 [15,] 0.0932684837 0.0819655471 [16,] 0.1923910909 0.0932684837 [17,] -0.0415855428 0.1923910909 [18,] 0.0032741580 -0.0415855428 [19,] -0.0616853512 0.0032741580 [20,] -0.0167258420 -0.0616853512 [21,] -0.1893054050 -0.0167258420 [22,] -0.0938073910 -0.1893054050 [23,] 0.0078816000 -0.0938073910 [24,] 0.1001957517 0.0078816000 [25,] 0.0986988726 0.1001957517 [26,] 0.0699020008 0.0986988726 [27,] -0.0785954458 0.0699020008 [28,] -0.1345754841 -0.0785954458 [29,] 0.0990434348 -0.1345754841 [30,] -0.0009942188 0.0990434348 [31,] 0.1139464636 -0.0009942188 [32,] 0.0140086183 0.1139464636 [33,] 0.2615288637 0.0140086183 [34,] 0.1667331269 0.2615288637 [35,] 0.0637243802 0.1667331269 [36,] -0.0815626951 0.0637243802 [37,] 0.0443363617 -0.0815626951 [38,] -0.0813630783 0.0443363617 [39,] -0.1421651638 -0.0813630783 [40,] -0.0532478477 -0.1421651638 [41,] -0.3000281623 -0.0532478477 [42,] 0.1299285098 -0.3000281623 [43,] -0.1201279707 0.1299285098 [44,] 0.1253305804 -0.1201279707 [45,] -0.0297475640 0.1253305804 [46,] -0.0368479398 -0.0297475640 [47,] 0.0658391351 -0.0368479398 [48,] 0.1432502580 0.0658391351 [49,] 0.1469501585 0.1432502580 [50,] -0.0168495504 0.1469501585 [51,] -0.0379510610 -0.0168495504 [52,] -0.0511330928 -0.0379510610 [53,] 0.0448845992 -0.0511330928 [54,] -0.0499562748 0.0448845992 [55,] 0.0500813788 -0.0499562748 [56,] -0.1250589204 0.0500813788 [57,] 0.0276581047 -0.1250589204 [58,] -0.1191428460 0.0276581047 > z <- as.data.frame(dum1) > z lag(myerror, k = 1) myerror 1 -0.0929526421 -0.2240484785 2 -0.0536549192 -0.0929526421 3 0.1654431869 -0.0536549192 4 0.0465653336 0.1654431869 5 0.1976856711 0.0465653336 6 -0.0822521741 0.1976856711 7 0.0177854795 -0.0822521741 8 0.0024455636 0.0177854795 9 -0.0701339994 0.0024455636 10 0.0830650499 -0.0701339994 11 -0.1374451153 0.0830650499 12 0.0621651638 -0.1374451153 13 -0.1970327506 0.0621651638 14 0.0819655471 -0.1970327506 15 0.0932684837 0.0819655471 16 0.1923910909 0.0932684837 17 -0.0415855428 0.1923910909 18 0.0032741580 -0.0415855428 19 -0.0616853512 0.0032741580 20 -0.0167258420 -0.0616853512 21 -0.1893054050 -0.0167258420 22 -0.0938073910 -0.1893054050 23 0.0078816000 -0.0938073910 24 0.1001957517 0.0078816000 25 0.0986988726 0.1001957517 26 0.0699020008 0.0986988726 27 -0.0785954458 0.0699020008 28 -0.1345754841 -0.0785954458 29 0.0990434348 -0.1345754841 30 -0.0009942188 0.0990434348 31 0.1139464636 -0.0009942188 32 0.0140086183 0.1139464636 33 0.2615288637 0.0140086183 34 0.1667331269 0.2615288637 35 0.0637243802 0.1667331269 36 -0.0815626951 0.0637243802 37 0.0443363617 -0.0815626951 38 -0.0813630783 0.0443363617 39 -0.1421651638 -0.0813630783 40 -0.0532478477 -0.1421651638 41 -0.3000281623 -0.0532478477 42 0.1299285098 -0.3000281623 43 -0.1201279707 0.1299285098 44 0.1253305804 -0.1201279707 45 -0.0297475640 0.1253305804 46 -0.0368479398 -0.0297475640 47 0.0658391351 -0.0368479398 48 0.1432502580 0.0658391351 49 0.1469501585 0.1432502580 50 -0.0168495504 0.1469501585 51 -0.0379510610 -0.0168495504 52 -0.0511330928 -0.0379510610 53 0.0448845992 -0.0511330928 54 -0.0499562748 0.0448845992 55 0.0500813788 -0.0499562748 56 -0.1250589204 0.0500813788 57 0.0276581047 -0.1250589204 58 -0.1191428460 0.0276581047 > plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals') > lines(lowess(z)) > abline(lm(z)) > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/72gw01260104796.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function') > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/86djv1260104796.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function') > grid() > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/963tp1260104796.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0)) > plot(mylm, las = 1, sub='Residual Diagnostics') > par(opar) > dev.off() null device 1 > if (n > n25) { + postscript(file="/var/www/html/rcomp/tmp/104y0t1260104796.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) + plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint') + grid() + dev.off() + } null device 1 > > #Note: the /var/www/html/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/www/html/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE) > a<-table.row.end(a) > myeq <- colnames(x)[1] > myeq <- paste(myeq, '[t] = ', sep='') > for (i in 1:k){ + if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '') + myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ') + if (rownames(mysum$coefficients)[i] != '(Intercept)') { + myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='') + if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='') + } + } > myeq <- paste(myeq, ' + e[t]') > a<-table.row.start(a) > a<-table.element(a, myeq) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/11cw6p1260104796.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Variable',header=TRUE) > a<-table.element(a,'Parameter',header=TRUE) > a<-table.element(a,'S.D.',header=TRUE) > a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE) > a<-table.element(a,'2-tail p-value',header=TRUE) > a<-table.element(a,'1-tail p-value',header=TRUE) > a<-table.row.end(a) > for (i in 1:k){ + a<-table.row.start(a) + a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE) + a<-table.element(a,mysum$coefficients[i,1]) + a<-table.element(a, round(mysum$coefficients[i,2],6)) + a<-table.element(a, round(mysum$coefficients[i,3],4)) + a<-table.element(a, round(mysum$coefficients[i,4],6)) + a<-table.element(a, round(mysum$coefficients[i,4]/2,6)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/122r3e1260104796.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Multiple R',1,TRUE) > a<-table.element(a, sqrt(mysum$r.squared)) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'R-squared',1,TRUE) > a<-table.element(a, mysum$r.squared) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Adjusted R-squared',1,TRUE) > a<-table.element(a, mysum$adj.r.squared) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (value)',1,TRUE) > a<-table.element(a, mysum$fstatistic[1]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE) > a<-table.element(a, mysum$fstatistic[2]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE) > a<-table.element(a, mysum$fstatistic[3]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'p-value',1,TRUE) > a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3])) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Residual Standard Deviation',1,TRUE) > a<-table.element(a, mysum$sigma) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Sum Squared Residuals',1,TRUE) > a<-table.element(a, sum(myerror*myerror)) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/13jian1260104796.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Time or Index', 1, TRUE) > a<-table.element(a, 'Actuals', 1, TRUE) > a<-table.element(a, 'Interpolation
Forecast', 1, TRUE) > a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE) > a<-table.row.end(a) > for (i in 1:n) { + a<-table.row.start(a) + a<-table.element(a,i, 1, TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,x[i]-mysum$resid[i]) + a<-table.element(a,mysum$resid[i]) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/14fchr1260104796.tab") > if (n > n25) { + a<-table.start() + a<-table.row.start(a) + a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'p-values',header=TRUE) + a<-table.element(a,'Alternative Hypothesis',3,header=TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'breakpoint index',header=TRUE) + a<-table.element(a,'greater',header=TRUE) + a<-table.element(a,'2-sided',header=TRUE) + a<-table.element(a,'less',header=TRUE) + a<-table.row.end(a) + for (mypoint in kp3:nmkm3) { + a<-table.row.start(a) + a<-table.element(a,mypoint,header=TRUE) + a<-table.element(a,gqarr[mypoint-kp3+1,1]) + a<-table.element(a,gqarr[mypoint-kp3+1,2]) + a<-table.element(a,gqarr[mypoint-kp3+1,3]) + a<-table.row.end(a) + } + a<-table.end(a) + table.save(a,file="/var/www/html/rcomp/tmp/15u5gs1260104796.tab") + a<-table.start() + a<-table.row.start(a) + a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'Description',header=TRUE) + a<-table.element(a,'# significant tests',header=TRUE) + a<-table.element(a,'% significant tests',header=TRUE) + a<-table.element(a,'OK/NOK',header=TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'1% type I error level',header=TRUE) + a<-table.element(a,numsignificant1) + a<-table.element(a,numsignificant1/numgqtests) + if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK' + a<-table.element(a,dum) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'5% type I error level',header=TRUE) + a<-table.element(a,numsignificant5) + a<-table.element(a,numsignificant5/numgqtests) + if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK' + a<-table.element(a,dum) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'10% type I error level',header=TRUE) + a<-table.element(a,numsignificant10) + a<-table.element(a,numsignificant10/numgqtests) + if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK' + a<-table.element(a,dum) + a<-table.row.end(a) + a<-table.end(a) + table.save(a,file="/var/www/html/rcomp/tmp/16hy9d1260104796.tab") + } > > system("convert tmp/1jt0x1260104796.ps tmp/1jt0x1260104796.png") > system("convert tmp/2ewz41260104796.ps tmp/2ewz41260104796.png") > system("convert tmp/3hnph1260104796.ps tmp/3hnph1260104796.png") > system("convert tmp/4w2wj1260104796.ps tmp/4w2wj1260104796.png") > system("convert tmp/5rteb1260104796.ps tmp/5rteb1260104796.png") > system("convert tmp/6jlng1260104796.ps tmp/6jlng1260104796.png") > system("convert tmp/72gw01260104796.ps tmp/72gw01260104796.png") > system("convert tmp/86djv1260104796.ps tmp/86djv1260104796.png") > system("convert tmp/963tp1260104796.ps tmp/963tp1260104796.png") > system("convert tmp/104y0t1260104796.ps tmp/104y0t1260104796.png") > > > proc.time() user system elapsed 2.367 1.536 3.497