R version 2.9.0 (2009-04-17) Copyright (C) 2009 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- c(106370,109375,116476,123297,114813,117925,126466,131235,120546,123791,129813,133463,122987,125418,130199,133016,121454,122044,128313,131556,120027,123001,130111,132524,123742,124931,133646,136557,127509,128945,137191,139716,129083,131604,139413,143125,133948,137116,144864,149277,138796,143258,150034,154708,144888,148762,156500,161088,152772,158011,163318,169969,162269,165765,170600,174681,166364,170240,176150,182056,172218,177856,182253,188090,176863,183273,187969,194650,183036,189516,193805,200499,188142,193732,197126,205140,191751,196700,199784,207360,196101,200824,205743,212489,200810,203683,207286,210910,194915,217920) > par10 = 'FALSE' > par9 = '0' > par8 = '0' > par7 = '0' > par6 = '1' > par5 = '4' > par4 = '1' > par3 = '1' > par2 = '1' > par1 = '24' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: Wessa P., (2009), ARIMA Forecasting (v1.0.5) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_arimaforecasting.wasp/ > #Source of accompanying publication: > #Technical description: > par1 <- as.numeric(par1) #cut off periods > par2 <- as.numeric(par2) #lambda > par3 <- as.numeric(par3) #degree of non-seasonal differencing > par4 <- as.numeric(par4) #degree of seasonal differencing > par5 <- as.numeric(par5) #seasonal period > par6 <- as.numeric(par6) #p > par7 <- as.numeric(par7) #q > par8 <- as.numeric(par8) #P > par9 <- as.numeric(par9) #Q > if (par10 == 'TRUE') par10 <- TRUE > if (par10 == 'FALSE') par10 <- FALSE > if (par2 == 0) x <- log(x) > if (par2 != 0) x <- x^par2 > lx <- length(x) > first <- lx - 2*par1 > nx <- lx - par1 > nx1 <- nx + 1 > fx <- lx - nx > if (fx < 1) { + fx <- par5 + nx1 <- lx + fx - 1 + first <- lx - 2*fx + } > first <- 1 > if (fx < 3) fx <- round(lx/10,0) > (arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML')) Call: arima(x = x[1:nx], order = c(par6, par3, par7), seasonal = list(order = c(par8, par4, par9), period = par5), include.mean = par10, method = "ML") Coefficients: ar1 -0.1482 s.e. 0.1259 sigma^2 estimated as 1666927: log likelihood = -523.52, aic = 1051.05 > (forecast <- predict(arima.out,par1)) $pred Time Series: Start = 67 End = 90 Frequency = 1 [1] 187555.6 193409.6 182180.0 188590.4 192873.0 198726.9 187497.4 193907.8 [9] 198190.3 204044.3 192814.8 199225.2 203507.7 209361.7 198132.2 204542.5 [17] 208825.1 214679.0 203449.5 209859.9 214142.5 219996.4 208766.9 215177.3 $se Time Series: Start = 67 End = 90 Frequency = 1 [1] 1291.095 1696.011 2036.943 2326.448 3353.762 4024.301 4611.859 [8] 5130.747 6233.542 7076.085 7840.641 8535.337 9726.790 10706.069 [15] 11613.954 12454.321 13734.026 14830.959 15862.206 16828.979 18193.725 [22] 19395.846 20536.995 21616.677 > (lb <- forecast$pred - 1.96 * forecast$se) Time Series: Start = 67 End = 90 Frequency = 1 [1] 185025.1 190085.4 178187.6 184030.6 186299.6 190839.3 178458.2 183851.5 [9] 185972.6 190175.2 177447.1 182495.9 184443.2 188377.8 175368.8 180132.1 [17] 181906.4 185610.4 172359.6 176875.1 178482.7 181980.6 168514.4 172808.6 > (ub <- forecast$pred + 1.96 * forecast$se) Time Series: Start = 67 End = 90 Frequency = 1 [1] 190086.2 196733.7 186172.5 193150.3 199446.3 206614.6 196536.7 203964.1 [9] 210408.1 217913.4 208182.4 215954.4 222572.2 230345.6 220895.5 228953.0 [17] 235743.8 243747.7 234539.4 242844.7 249802.2 258012.3 249019.4 257546.0 > if (par2 == 0) { + x <- exp(x) + forecast$pred <- exp(forecast$pred) + lb <- exp(lb) + ub <- exp(ub) + } > if (par2 != 0) { + x <- x^(1/par2) + forecast$pred <- forecast$pred^(1/par2) + lb <- lb^(1/par2) + ub <- ub^(1/par2) + } > if (par2 < 0) { + olb <- lb + lb <- ub + ub <- olb + } > (actandfor <- c(x[1:nx], forecast$pred)) [1] 106370.0 109375.0 116476.0 123297.0 114813.0 117925.0 126466.0 131235.0 [9] 120546.0 123791.0 129813.0 133463.0 122987.0 125418.0 130199.0 133016.0 [17] 121454.0 122044.0 128313.0 131556.0 120027.0 123001.0 130111.0 132524.0 [25] 123742.0 124931.0 133646.0 136557.0 127509.0 128945.0 137191.0 139716.0 [33] 129083.0 131604.0 139413.0 143125.0 133948.0 137116.0 144864.0 149277.0 [41] 138796.0 143258.0 150034.0 154708.0 144888.0 148762.0 156500.0 161088.0 [49] 152772.0 158011.0 163318.0 169969.0 162269.0 165765.0 170600.0 174681.0 [57] 166364.0 170240.0 176150.0 182056.0 172218.0 177856.0 182253.0 188090.0 [65] 176863.0 183273.0 187555.6 193409.6 182180.0 188590.4 192873.0 198726.9 [73] 187497.4 193907.8 198190.3 204044.3 192814.8 199225.2 203507.7 209361.7 [81] 198132.2 204542.5 208825.1 214679.0 203449.5 209859.9 214142.5 219996.4 [89] 208766.9 215177.3 > (perc.se <- (ub-forecast$pred)/1.96/forecast$pred) Time Series: Start = 67 End = 90 Frequency = 1 [1] 0.006883800 0.008769013 0.011180932 0.012335980 0.017388452 0.020250404 [7] 0.024596918 0.026459727 0.031452299 0.034679158 0.040664108 0.042842665 [13] 0.047795683 0.051136720 0.058617208 0.060888663 0.065768086 0.069084339 [19] 0.077966295 0.080191493 0.084960853 0.088164375 0.098372850 0.100459855 > postscript(file="/var/www/html/rcomp/tmp/1khr61260377730.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mar=c(4,4,2,2),las=1) > ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub)) > plot(x,ylim=ylim,type='n',xlim=c(first,lx)) > usr <- par('usr') > rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon') > rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender') > abline(h= (-3:3)*2 , col ='gray', lty =3) > polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA) > lines(nx1:lx, lb , lty=2) > lines(nx1:lx, ub , lty=2) > lines(x, lwd=2) > lines(nx1:lx, forecast$pred , lwd=2 , col ='white') > box() > par(opar) > dev.off() null device 1 > prob.dec <- array(NA, dim=fx) > prob.sdec <- array(NA, dim=fx) > prob.ldec <- array(NA, dim=fx) > prob.pval <- array(NA, dim=fx) > perf.pe <- array(0, dim=fx) > perf.mape <- array(0, dim=fx) > perf.mape1 <- array(0, dim=fx) > perf.se <- array(0, dim=fx) > perf.mse <- array(0, dim=fx) > perf.mse1 <- array(0, dim=fx) > perf.rmse <- array(0, dim=fx) > for (i in 1:fx) { + locSD <- (ub[i] - forecast$pred[i]) / 1.96 + perf.pe[i] = (x[nx+i] - forecast$pred[i]) / forecast$pred[i] + perf.se[i] = (x[nx+i] - forecast$pred[i])^2 + prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD) + prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD) + prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD) + prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD) + } > perf.mape[1] = abs(perf.pe[1]) > perf.mse[1] = abs(perf.se[1]) > for (i in 2:fx) { + perf.mape[i] = perf.mape[i-1] + abs(perf.pe[i]) + perf.mape1[i] = perf.mape[i] / i + perf.mse[i] = perf.mse[i-1] + perf.se[i] + perf.mse1[i] = perf.mse[i] / i + } > perf.rmse = sqrt(perf.mse1) > postscript(file="/var/www/html/rcomp/tmp/2y9521260377730.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub))) > dum <- forecast$pred > dum[1:par1] <- x[(nx+1):lx] > lines(dum, lty=1) > lines(ub,lty=3) > lines(lb,lty=3) > dev.off() null device 1 > > #Note: the /var/www/html/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/www/html/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'Y[t]',1,header=TRUE) > a<-table.element(a,'F[t]',1,header=TRUE) > a<-table.element(a,'95% LB',1,header=TRUE) > a<-table.element(a,'95% UB',1,header=TRUE) > a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE) > mylab <- paste('P(F[t]>Y[',nx,sep='') > mylab <- paste(mylab,'])',sep='') > a<-table.element(a,mylab,1,header=TRUE) > a<-table.row.end(a) > for (i in (nx-par5):nx) { + a<-table.row.start(a) + a<-table.element(a,i,header=TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.row.end(a) + } > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(x[nx+i],4)) + a<-table.element(a,round(forecast$pred[i],4)) + a<-table.element(a,round(lb[i],4)) + a<-table.element(a,round(ub[i],4)) + a<-table.element(a,round((1-prob.pval[i]),4)) + a<-table.element(a,round((1-prob.dec[i]),4)) + a<-table.element(a,round((1-prob.sdec[i]),4)) + a<-table.element(a,round((1-prob.ldec[i]),4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/3744v1260377730.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',7,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'% S.E.',1,header=TRUE) > a<-table.element(a,'PE',1,header=TRUE) > a<-table.element(a,'MAPE',1,header=TRUE) > a<-table.element(a,'Sq.E',1,header=TRUE) > a<-table.element(a,'MSE',1,header=TRUE) > a<-table.element(a,'RMSE',1,header=TRUE) > a<-table.row.end(a) > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(perc.se[i],4)) + a<-table.element(a,round(perf.pe[i],4)) + a<-table.element(a,round(perf.mape1[i],4)) + a<-table.element(a,round(perf.se[i],4)) + a<-table.element(a,round(perf.mse1[i],4)) + a<-table.element(a,round(perf.rmse[i],4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/4cjzb1260377730.tab") > > system("convert tmp/1khr61260377730.ps tmp/1khr61260377730.png") > system("convert tmp/2y9521260377730.ps tmp/2y9521260377730.png") > > > proc.time() user system elapsed 0.616 0.330 0.846