R version 2.9.0 (2009-04-17) Copyright (C) 2009 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- c(9.3,9.3,8.7,8.2,8.3,8.5,8.6,8.5,8.2,8.1,7.9,8.6,8.7,8.7,8.5,8.4,8.5,8.7,8.7,8.6,8.5,8.3,8,8.2,8.1,8.1,8,7.9,7.9,8,8,7.9,8,7.7,7.2,7.5,7.3,7,7,7,7.2,7.3,7.1,6.8,6.4,6.1,6.5,7.7,7.9,7.5,6.9,6.6,6.9,7.7,8,8,7.7,7.3,7.4,8.1) > par10 = 'FALSE' > par9 = '0' > par8 = '1' > par7 = '0' > par6 = '2' > par5 = '12' > par4 = '1' > par3 = '1' > par2 = '1' > par1 = '24' > par1 <- as.numeric(par1) #cut off periods > par1 <- 28 > par2 <- as.numeric(par2) #lambda > par3 <- as.numeric(par3) #degree of non-seasonal differencing > par4 <- as.numeric(par4) #degree of seasonal differencing > par5 <- as.numeric(par5) #seasonal period > par6 <- as.numeric(par6) #p > par6 <- 3 > par7 <- as.numeric(par7) #q > par7 <- 3 > par8 <- as.numeric(par8) #P > par9 <- as.numeric(par9) #Q > if (par10 == 'TRUE') par10 <- TRUE > if (par10 == 'FALSE') par10 <- FALSE > if (par2 == 0) x <- log(x) > if (par2 != 0) x <- x^par2 > lx <- length(x) > first <- lx - 2*par1 > nx <- lx - par1 > nx1 <- nx + 1 > fx <- lx - nx > if (fx < 1) { + fx <- par5 + nx1 <- lx + fx - 1 + first <- lx - 2*fx + } > first <- 1 > if (fx < 3) fx <- round(lx/10,0) > (arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML')) Call: arima(x = x[1:nx], order = c(par6, par3, par7), seasonal = list(order = c(par8, par4, par9), period = par5), include.mean = par10, method = "ML") Coefficients: ar1 ar2 ar3 ma1 ma2 ma3 sar1 0.7344 0.0092 0.0897 -0.0986 0.0992 -0.9995 0.6144 s.e. 0.3007 0.3812 0.2667 0.3092 0.2909 0.3146 0.2554 sigma^2 estimated as 0.01311: log likelihood = 9.87, aic = -3.74 > (forecast <- predict(arima.out,par1)) $pred Time Series: Start = 33 End = 60 Frequency = 1 [1] 8.016980 7.839605 7.535846 7.480213 7.303273 7.342657 7.338068 7.267496 [9] 7.231510 7.292079 7.311116 7.227581 7.492114 7.340956 7.045539 6.842056 [17] 6.625811 6.696285 6.756276 6.708939 6.655302 6.695500 6.729568 6.659033 [25] 7.016719 6.883826 6.595401 6.302691 $se Time Series: Start = 33 End = 60 Frequency = 1 [1] 0.1193990 0.2270690 0.3429225 0.3998566 0.4364971 0.4641399 0.4848276 [8] 0.5004654 0.5125339 0.5219627 0.5293974 0.5353121 0.5977274 0.7078438 [15] 0.8534678 0.9377552 0.9956135 1.0405502 1.0750775 1.1017893 1.1228118 [22] 1.1395307 1.1529350 1.1637669 1.2266340 1.3342791 1.4811122 1.5731643 > (lb <- forecast$pred - 1.96 * forecast$se) Time Series: Start = 33 End = 60 Frequency = 1 [1] 7.782958 7.394550 6.863718 6.696494 6.447739 6.432943 6.387805 6.286583 [9] 6.226943 6.269032 6.273497 6.178369 6.320569 5.953582 5.372742 5.004056 [17] 4.674409 4.656806 4.649124 4.549432 4.454591 4.462020 4.469815 4.378050 [25] 4.612517 4.268639 3.692421 3.219289 > (ub <- forecast$pred + 1.96 * forecast$se) Time Series: Start = 33 End = 60 Frequency = 1 [1] 8.251002 8.284660 8.207974 8.263932 8.158807 8.252371 8.288330 8.248408 [9] 8.236076 8.315126 8.348735 8.276792 8.663660 8.728330 8.718336 8.680056 [17] 8.577214 8.735763 8.863428 8.868446 8.856013 8.928981 8.989320 8.940016 [25] 9.420922 9.499013 9.498380 9.386093 > if (par2 == 0) { + x <- exp(x) + forecast$pred <- exp(forecast$pred) + lb <- exp(lb) + ub <- exp(ub) + } > if (par2 != 0) { + x <- x^(1/par2) + forecast$pred <- forecast$pred^(1/par2) + lb <- lb^(1/par2) + ub <- ub^(1/par2) + } > if (par2 < 0) { + olb <- lb + lb <- ub + ub <- olb + } > (actandfor <- c(x[1:nx], forecast$pred)) [1] 9.300000 9.300000 8.700000 8.200000 8.300000 8.500000 8.600000 8.500000 [9] 8.200000 8.100000 7.900000 8.600000 8.700000 8.700000 8.500000 8.400000 [17] 8.500000 8.700000 8.700000 8.600000 8.500000 8.300000 8.000000 8.200000 [25] 8.100000 8.100000 8.000000 7.900000 7.900000 8.000000 8.000000 7.900000 [33] 8.016980 7.839605 7.535846 7.480213 7.303273 7.342657 7.338068 7.267496 [41] 7.231510 7.292079 7.311116 7.227581 7.492114 7.340956 7.045539 6.842056 [49] 6.625811 6.696285 6.756276 6.708939 6.655302 6.695500 6.729568 6.659033 [57] 7.016719 6.883826 6.595401 6.302691 > (perc.se <- (ub-forecast$pred)/1.96/forecast$pred) Time Series: Start = 33 End = 60 Frequency = 1 [1] 0.01489327 0.02896435 0.04550551 0.05345525 0.05976733 0.06321143 [7] 0.06607020 0.06886352 0.07087509 0.07157941 0.07240994 0.07406519 [13] 0.07978087 0.09642392 0.12113591 0.13705752 0.15026288 0.15539216 [19] 0.15912280 0.16422705 0.16870937 0.17019350 0.17132378 0.17476515 [25] 0.17481589 0.19382812 0.22456744 0.24960199 > postscript(file="/var/www/html/rcomp/tmp/1htlz1260464079.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mar=c(4,4,2,2),las=1) > ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub)) > plot(x,ylim=ylim,type='n',xlim=c(first,lx)) > usr <- par('usr') > rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon') > rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender') > abline(h= (-3:3)*2 , col ='gray', lty =3) > polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA) > lines(nx1:lx, lb , lty=2) > lines(nx1:lx, ub , lty=2) > lines(x, lwd=2) > lines(nx1:lx, forecast$pred , lwd=2 , col ='white') > box() > par(opar) > dev.off() null device 1 > prob.dec <- array(NA, dim=fx) > prob.sdec <- array(NA, dim=fx) > prob.ldec <- array(NA, dim=fx) > prob.pval <- array(NA, dim=fx) > perf.pe <- array(0, dim=fx) > perf.mape <- array(0, dim=fx) > perf.mape1 <- array(0, dim=fx) > perf.se <- array(0, dim=fx) > perf.mse <- array(0, dim=fx) > perf.mse1 <- array(0, dim=fx) > perf.rmse <- array(0, dim=fx) > for (i in 1:fx) { + locSD <- (ub[i] - forecast$pred[i]) / 1.96 + perf.pe[i] = (x[nx+i] - forecast$pred[i]) / forecast$pred[i] + perf.se[i] = (x[nx+i] - forecast$pred[i])^2 + prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD) + prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD) + prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD) + prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD) + } > perf.mape[1] = abs(perf.pe[1]) > perf.mse[1] = abs(perf.se[1]) > for (i in 2:fx) { + perf.mape[i] = perf.mape[i-1] + abs(perf.pe[i]) + perf.mape1[i] = perf.mape[i] / i + perf.mse[i] = perf.mse[i-1] + perf.se[i] + perf.mse1[i] = perf.mse[i] / i + } > perf.rmse = sqrt(perf.mse1) > postscript(file="/var/www/html/rcomp/tmp/2dncd1260464079.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub))) > dum <- forecast$pred > dum[1:par1] <- x[(nx+1):lx] > lines(dum, lty=1) > lines(ub,lty=3) > lines(lb,lty=3) > dev.off() null device 1 > > #Note: the /var/www/html/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/www/html/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'Y[t]',1,header=TRUE) > a<-table.element(a,'F[t]',1,header=TRUE) > a<-table.element(a,'95% LB',1,header=TRUE) > a<-table.element(a,'95% UB',1,header=TRUE) > a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE) > mylab <- paste('P(F[t]>Y[',nx,sep='') > mylab <- paste(mylab,'])',sep='') > a<-table.element(a,mylab,1,header=TRUE) > a<-table.row.end(a) > for (i in (nx-par5):nx) { + a<-table.row.start(a) + a<-table.element(a,i,header=TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.row.end(a) + } > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(x[nx+i],4)) + a<-table.element(a,round(forecast$pred[i],4)) + a<-table.element(a,round(lb[i],4)) + a<-table.element(a,round(ub[i],4)) + a<-table.element(a,round((1-prob.pval[i]),4)) + a<-table.element(a,round((1-prob.dec[i]),4)) + a<-table.element(a,round((1-prob.sdec[i]),4)) + a<-table.element(a,round((1-prob.ldec[i]),4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/3nzsf1260464079.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',7,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'% S.E.',1,header=TRUE) > a<-table.element(a,'PE',1,header=TRUE) > a<-table.element(a,'MAPE',1,header=TRUE) > a<-table.element(a,'Sq.E',1,header=TRUE) > a<-table.element(a,'MSE',1,header=TRUE) > a<-table.element(a,'RMSE',1,header=TRUE) > a<-table.row.end(a) > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(perc.se[i],4)) + a<-table.element(a,round(perf.pe[i],4)) + a<-table.element(a,round(perf.mape1[i],4)) + a<-table.element(a,round(perf.se[i],4)) + a<-table.element(a,round(perf.mse1[i],4)) + a<-table.element(a,round(perf.rmse[i],4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/4ol8s1260464079.tab") > > system("convert tmp/1htlz1260464079.ps tmp/1htlz1260464079.png") > system("convert tmp/2dncd1260464079.ps tmp/2dncd1260464079.png") > > > proc.time() user system elapsed 1.509 0.387 1.719