R version 2.9.0 (2009-04-17) Copyright (C) 2009 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- c(21790,13253,37702,30364,32609,30212,29965,28352,25814,22414,20506,28806,22228,13971,36845,35338,35022,34777,26887,23970,22780,17351,21382,24561,17409,11514,31514,27071,29462,26105,22397,23843,21705,18089,20764,25316,17704,15548,28029,29383,36438,32034,22679,24319,18004,17537,20366,22782,19169,13807,29743,25591,29096,26482,22405,27044,17970,18730,19684,19785,18479,10698,31956,29506,34506,27165,26736,23691,18157,17328,18205,20995,17382,9367,31124,26551,30651,25859,25100,25778,20418,18688,20424,24776,19814,12738,31566,30111,30019,31934,25826,26835,20205,17789,20520,22518,15572,11509,25447,24090,27786,26195,20516,22759,19028,16971,20036,22485,18730) > par10 = 'FALSE' > par9 = '1' > par8 = '0' > par7 = '1' > par6 = '3' > par5 = '12' > par4 = '1' > par3 = '1' > par2 = '-0.5' > par1 = '12' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: Wessa P., (2009), ARIMA Forecasting (v1.0.5) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_arimaforecasting.wasp/ > #Source of accompanying publication: > #Technical description: > par1 <- as.numeric(par1) #cut off periods > par2 <- as.numeric(par2) #lambda > par3 <- as.numeric(par3) #degree of non-seasonal differencing > par4 <- as.numeric(par4) #degree of seasonal differencing > par5 <- as.numeric(par5) #seasonal period > par6 <- as.numeric(par6) #p > par7 <- as.numeric(par7) #q > par8 <- as.numeric(par8) #P > par9 <- as.numeric(par9) #Q > if (par10 == 'TRUE') par10 <- TRUE > if (par10 == 'FALSE') par10 <- FALSE > if (par2 == 0) x <- log(x) > if (par2 != 0) x <- x^par2 > lx <- length(x) > first <- lx - 2*par1 > nx <- lx - par1 > nx1 <- nx + 1 > fx <- lx - nx > if (fx < 1) { + fx <- par5 + nx1 <- lx + fx - 1 + first <- lx - 2*fx + } > first <- 1 > if (fx < 3) fx <- round(lx/10,0) > (arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML')) Call: arima(x = x[1:nx], order = c(par6, par3, par7), seasonal = list(order = c(par8, par4, par9), period = par5), include.mean = par10, method = "ML") Coefficients: ar1 ar2 ar3 ma1 sma1 0.0818 0.2949 0.2103 -0.9620 -0.9999 s.e. 0.1292 0.1262 0.1194 0.1001 0.5382 sigma^2 estimated as 9.843e-08: log likelihood = 544.57, aic = -1077.14 > (forecast <- predict(arima.out,par1)) $pred Time Series: Start = 98 End = 109 Frequency = 1 [1] 0.009221732 0.005991522 0.006251908 0.005901877 0.006204901 0.006632362 [7] 0.006580747 0.007304062 0.007663750 0.007324210 0.006813933 0.007649058 $se Time Series: Start = 98 End = 109 Frequency = 1 [1] 0.0003348739 0.0003369950 0.0003565264 0.0003723374 0.0003780915 [6] 0.0003856731 0.0003907859 0.0003947120 0.0003984879 0.0004015648 [11] 0.0004039485 0.0004066558 > (lb <- forecast$pred - 1.96 * forecast$se) Time Series: Start = 98 End = 109 Frequency = 1 [1] 0.008565379 0.005331012 0.005553116 0.005172096 0.005463842 0.005876442 [7] 0.005814807 0.006530426 0.006882714 0.006537143 0.006022194 0.006852013 > (ub <- forecast$pred + 1.96 * forecast$se) Time Series: Start = 98 End = 109 Frequency = 1 [1] 0.009878085 0.006652032 0.006950699 0.006631659 0.006945961 0.007388281 [7] 0.007346688 0.008077697 0.008444787 0.008111277 0.007605672 0.008446104 > if (par2 == 0) { + x <- exp(x) + forecast$pred <- exp(forecast$pred) + lb <- exp(lb) + ub <- exp(ub) + } > if (par2 != 0) { + x <- x^(1/par2) + forecast$pred <- forecast$pred^(1/par2) + lb <- lb^(1/par2) + ub <- ub^(1/par2) + } > if (par2 < 0) { + olb <- lb + lb <- ub + ub <- olb + } > (actandfor <- c(x[1:nx], forecast$pred)) [1] 21790.00 13253.00 37702.00 30364.00 32609.00 30212.00 29965.00 28352.00 [9] 25814.00 22414.00 20506.00 28806.00 22228.00 13971.00 36845.00 35338.00 [17] 35022.00 34777.00 26887.00 23970.00 22780.00 17351.00 21382.00 24561.00 [25] 17409.00 11514.00 31514.00 27071.00 29462.00 26105.00 22397.00 23843.00 [33] 21705.00 18089.00 20764.00 25316.00 17704.00 15548.00 28029.00 29383.00 [41] 36438.00 32034.00 22679.00 24319.00 18004.00 17537.00 20366.00 22782.00 [49] 19169.00 13807.00 29743.00 25591.00 29096.00 26482.00 22405.00 27044.00 [57] 17970.00 18730.00 19684.00 19785.00 18479.00 10698.00 31956.00 29506.00 [65] 34506.00 27165.00 26736.00 23691.00 18157.00 17328.00 18205.00 20995.00 [73] 17382.00 9367.00 31124.00 26551.00 30651.00 25859.00 25100.00 25778.00 [81] 20418.00 18688.00 20424.00 24776.00 19814.00 12738.00 31566.00 30111.00 [89] 30019.00 31934.00 25826.00 26835.00 20205.00 17789.00 20520.00 22518.00 [97] 15572.00 11759.12 27856.45 25584.38 28709.10 25973.49 22733.36 23091.36 [105] 18744.38 17026.18 18641.39 21537.94 17091.65 > (perc.se <- (ub-forecast$pred)/1.96/forecast$pred) Time Series: Start = 98 End = 109 Frequency = 1 [1] 0.08118833 0.13426035 0.13648505 0.15413701 0.14778308 0.13970316 [7] 0.14326308 0.12804433 0.12236386 0.13025226 0.14297184 0.12560032 > postscript(file="/var/www/html/rcomp/tmp/1hg3f1260467605.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mar=c(4,4,2,2),las=1) > ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub)) > plot(x,ylim=ylim,type='n',xlim=c(first,lx)) > usr <- par('usr') > rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon') > rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender') > abline(h= (-3:3)*2 , col ='gray', lty =3) > polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA) > lines(nx1:lx, lb , lty=2) > lines(nx1:lx, ub , lty=2) > lines(x, lwd=2) > lines(nx1:lx, forecast$pred , lwd=2 , col ='white') > box() > par(opar) > dev.off() null device 1 > prob.dec <- array(NA, dim=fx) > prob.sdec <- array(NA, dim=fx) > prob.ldec <- array(NA, dim=fx) > prob.pval <- array(NA, dim=fx) > perf.pe <- array(0, dim=fx) > perf.mape <- array(0, dim=fx) > perf.mape1 <- array(0, dim=fx) > perf.se <- array(0, dim=fx) > perf.mse <- array(0, dim=fx) > perf.mse1 <- array(0, dim=fx) > perf.rmse <- array(0, dim=fx) > for (i in 1:fx) { + locSD <- (ub[i] - forecast$pred[i]) / 1.96 + perf.pe[i] = (x[nx+i] - forecast$pred[i]) / forecast$pred[i] + perf.se[i] = (x[nx+i] - forecast$pred[i])^2 + prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD) + prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD) + prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD) + prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD) + } > perf.mape[1] = abs(perf.pe[1]) > perf.mse[1] = abs(perf.se[1]) > for (i in 2:fx) { + perf.mape[i] = perf.mape[i-1] + abs(perf.pe[i]) + perf.mape1[i] = perf.mape[i] / i + perf.mse[i] = perf.mse[i-1] + perf.se[i] + perf.mse1[i] = perf.mse[i] / i + } > perf.rmse = sqrt(perf.mse1) > postscript(file="/var/www/html/rcomp/tmp/2kxiq1260467605.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub))) > dum <- forecast$pred > dum[1:par1] <- x[(nx+1):lx] > lines(dum, lty=1) > lines(ub,lty=3) > lines(lb,lty=3) > dev.off() null device 1 > > #Note: the /var/www/html/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/www/html/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'Y[t]',1,header=TRUE) > a<-table.element(a,'F[t]',1,header=TRUE) > a<-table.element(a,'95% LB',1,header=TRUE) > a<-table.element(a,'95% UB',1,header=TRUE) > a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE) > mylab <- paste('P(F[t]>Y[',nx,sep='') > mylab <- paste(mylab,'])',sep='') > a<-table.element(a,mylab,1,header=TRUE) > a<-table.row.end(a) > for (i in (nx-par5):nx) { + a<-table.row.start(a) + a<-table.element(a,i,header=TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.row.end(a) + } > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(x[nx+i],4)) + a<-table.element(a,round(forecast$pred[i],4)) + a<-table.element(a,round(lb[i],4)) + a<-table.element(a,round(ub[i],4)) + a<-table.element(a,round((1-prob.pval[i]),4)) + a<-table.element(a,round((1-prob.dec[i]),4)) + a<-table.element(a,round((1-prob.sdec[i]),4)) + a<-table.element(a,round((1-prob.ldec[i]),4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/3hg081260467605.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',7,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'% S.E.',1,header=TRUE) > a<-table.element(a,'PE',1,header=TRUE) > a<-table.element(a,'MAPE',1,header=TRUE) > a<-table.element(a,'Sq.E',1,header=TRUE) > a<-table.element(a,'MSE',1,header=TRUE) > a<-table.element(a,'RMSE',1,header=TRUE) > a<-table.row.end(a) > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(perc.se[i],4)) + a<-table.element(a,round(perf.pe[i],4)) + a<-table.element(a,round(perf.mape1[i],4)) + a<-table.element(a,round(perf.se[i],4)) + a<-table.element(a,round(perf.mse1[i],4)) + a<-table.element(a,round(perf.rmse[i],4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/449wh1260467605.tab") > > system("convert tmp/1hg3f1260467605.ps tmp/1hg3f1260467605.png") > system("convert tmp/2kxiq1260467605.ps tmp/2kxiq1260467605.png") > > > proc.time() user system elapsed 1.260 0.351 1.502